代写FIT3152 Data analytics – 2024: Assignment 1代做R语言

FIT3152 Data analytics – 2024: Assignment 1

Your task

Analyse the country level predictors of pro-social behaviours to reduce the spread of COVID- 19 during the early stages of the pandemic.

This is an individual assignment.

Value

This assignment is worth 25% of your total marks for the unit.

It has 40 marks in total.

Suggested

Length

8 – 10 A4 pages (for your report) + extra pages as appendix (for your R script, clustering table, and Generative AI statement if required).

Font size 11 or 12pt,single spacing.

Due Date

11.55pm Monday 15th April 2024

Submission

Submit a single PDF file and single video file on Moodle.

Note that submission of a video report is a hurdle requirement.

Use the naming convention: FirstnameSecondnameID.{pdf, mp4, movetc.}

Turnitin will be used for similarity checking of all written submissions.

Generative

AI Use

In this assessment, you can use generative artificial intelligence (AI) in order to search for R functions and examples to perform tasks that you specify

only. Any use of generative AI must be appropriately acknowledged (see Learn HQ).

Late

Penalties

10% (4 mark) deduction per calendar day for up to one week.

Submissions more than 7 calendar days after the due date will receive a mark of zero (0) and no assessment feedback will be provided.

Instructions

Address each of the research questions below and report the results of your analysis and your interpretation of those results.

You are expected to include at least one high quality multivariate graphic summarising key results. You may also include other simpler graphs and tables. Report any assumptions you’ve made in modelling and include your R code as an appendix. Your R code must be machine readable text as the university requires all student submissions to be processed by plagiarism detection software. You must include a declaration on the use of Generative AI at the beginning of your written report and if you used Generative AI,a statement on how it was used, as an appendix.

There are two options for compiling your written report:

(1) You can create your report using any word processor with your R code pasted in as machine- readable text as an appendix, and save as a pdf, or

(2) As an R Markup document that contains the R code with the discussion/text interleaved. Render this as an HTML file and save as a pdf.

Your video report should be less than 100MB in size. You may need to reduce the resolution of your original recording to achieve this. Use a standard file format such as .mp4, or mov for submission.

Software

It is expected that you will use R for your data analysis and graphics and tables. You are free to use any R packages you need but must document these in your report and include in your R code. You may use other software, such as Excel, to create the table of clustering data for Question 3(a) .

Use of Generative AI

In this assessment, you can use generative artificial intelligence (AI) in order to search for R functions and examples to perform. tasks that you specify only. Any use of generative AI must be appropriately acknowledged (see Learn HQ).

If you do use Generative AI for your assignment then you must include the statement “Generative AI was used in this assignment.” In the introductory/first paragraph of your report. You must also include the following information as an appendix in your report: (1) the technology you used (e.g. ChatGPT), (2 the information that was generated (e.g. R code fragments), (3) the prompts used (i.e. the questions you asked), and (4) how the output was used in your work.

If you did not use generative AI in your assignment, then include the statement “Generative AI was not used in this assignment.” In the introductory/first paragraph of your report.

Questions

During the early stages of the COVID- 19 pandemic, researchers surveyed participants around the globe. A baseline study was conducted with the aim of identifying the most important predictors of pro-social COVID-19 behaviours, that is, actions that would reduce the spread of the virus. You can  read a more detailed description of the research and results in Van Lissa (2022), see references.

The aim of this assignment is to understand country-level differences in predictors of pro-social behaviours, reported by participants as: "I am willing to:

help others who suffer from coronavirus." (c19ProSo01)

make donations to help others that suffer from coronavirus. " (c19ProSo02)

protect vulnerable groups from coronavirus even at my own expense." (c19ProSo03)

make personal sacrifices to prevent the spread of coronavirus." (c19ProSo04)

Your task is to analyse the baseline survey data overall, with a focus on the country you have been assigned. You may make use of any additional data you require to answer the following questions.

1.          Descriptive analysis and pre-processing. (6 Marks)

(a) Describe the data overall, including things such as dimension, data types, distribution of numerical attributes, variety of non-numerical (text) attributes, missing values, and anything else of interest or relevance.

(b) Comment on any pre-processing or data manipulation required for the following analysis.

2.          Focus country vs all other countries as a group. (12 Marks)

(a) Identify your focus country from the accompanying list (FocusCountryByID.pdf). How do participant responses (attributes) for your focus country differ from the other countries in   the survey as a group?

(b) How well do participant responses (attributes) predict pro-social attitudes (c19ProSo01,2,3 and 4) for your focus country? Which attributes seem to be the best predictors? Explain your reasoning.

(c) Repeat Question 2(b) for the other countries as a group. Which attributes are the strongest predictors? How do these attributes compare to those of your focus country?

3.          Focus country vs cluster of similar countries. (10 Marks)

(a) Using a collection of social, economic, health, political or other indicators from external sources, identify at least 5 countries in the baseline data that are similar to your focus country using clustering. Van Lissa (2022) refers to several indicators you might consider, among others. Some of these are listed in the references, but these are not exhaustive. State the indicators used and describe how you calculated/identified similar countries. Copy and paste the table of values you used for your clustering into your report as an Appendix.

(b) How well do participant responses (attributes) predict pro-social attitudes (c19ProSo01,2,3 and 4) for this cluster of similar countries? Which attributes are the strongest predictors? How do these attributes compare to those of your focus country? Comment on the similarity and/or difference between your results for this question and Question 2(c). That is, does the group of all other countries 2(c), or the cluster of similar countries 3(b) give a better match to the important attributes for predicting pro-social attitudes in your focus country? Discuss.

4.         Video Presentation: (Submission Hurdle and 4 Marks)

Record a short presentation using your smart phone, Zoom, or similar method. Your presentation should be approximately 5 minutes in length and summarise your main findings for Sections 1 – 3, as well as describing how you conducted your research and any assumptions made. Pay particular emphasis to your results in Questions 2(c) and 3(b)

5           Overall considerations (8 Marks)

This includes: the quality and clarity of your reasoning and assumptions; the strength of support for your findings; the quality of your writing in general and communication of results; the quality of your graphics throughout, including at least one high-quality multivariate graphic; the quality of your R coding.

Data

The data for this assignment is a reduced version of that collected for the PsyCorona baseline study, Van Lissa et al. (2022). The filename is "PsyCoronaBaselineExtract.csv". The data includes ordinal data coded on a numerical scale. For this assignment assume it is reasonable to treat these responses as numerical.

Create your individual data as follows:

rm(list = ls())

set.seed(12345678) # XXXXXXXX = your student ID

cvbase = read.csv("PsyCoronaBaselineExtract.csv")

cvbase <- cvbase[sample(nrow(cvbase), 40000), ] # 40000 rows

Locate your focus country using the accompanying document FocusCountryByID.pdf.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图