代写COMP2003J、代写java设计编程

Assignment 3: Shortest Paths and
Minimum Spanning Trees
COMP2003J: Data Structures and Algorithms 2
Weight: 50% of final grade
Document Version: 1.0
Introduction
The goal of this assignment is to analyze and program some graph algorithms
and visualize them. This assignment includes three tasks.
Task 1 - Shortest Paths
1. (5%) A program called DijkstraLabeller.java tries to label the shortest
path for a given weighted graph with a starting vertex by harnessing
Dijkstra’s algorithm. It may work but not be perfect. Please study this
implementation carefully and point out its weakness(es), which can be
such as lacking enough information in returned objects, low efficiency
etc. When you find out a point, you need to make an in-depth analysis.
For example, assume that this implementation has a low-efficiency
issue; you need to specify where they are from, their time complexity,
etc.
2. (10%) Based on the analysis from the previous step, you need to reimplement
this solution to solve these issues. You need to create a
new java class named DijkstraLabeller2.java within the package
dsa.algorithms. If needed, you can create a few other classes. For
example, as we mentioned in our lecture, if you want to use an
adaptable priority queue, you may need to create a new interface and
its implementation as well. In your solution, you can use java built-in
data structures, such as Map, List etc. However, a graph and its edges
and vertices must be represented by the classes provided within the
assignment.
3. (5%) Create a test class named TestDijkstraLabeller.java to check
that your solution is correct and make comparisons with the previous
solution.
Task 2 - Minimum Spanning Trees
1. (5%) A program called KruskalLabeller.java manages to label the
minimum spanning tree in a given graph by utilizing Kruskal’s
algorithm. Similar to Task 1, please study this implementation carefully
and point out its weakness(es), particularly in terms of its efficiency.
2. (10%) Based on the analysis from the previous step, you need to reimplement
this solution to solve these issues. You need to create a
new java class named KruskalLabeller2.java within the package
dsa.algorithms. If needed, you can create a few other classes. For
example, you may need to implement Union-Find structure. In your
solution, you can use java built-in data structures, such as Map, List
etc. However, a graph and its edges and vertices must be represented
by the classes provided within the assignment.
3. (5%) Create a test class named TestKruskalLabeller.java to check
that your solution is correct and make comparisons with the previous
solution.
Task 3 - Visualization
(10%) Visualization can help us to better understand graphs and examine our
graph algorithms. This task requires you to study the existing java-based
techniques for graph visualization and choose a suitable one to implement a
solution to visualize the graphs used in your testing in Trask 2 and Task 3 and
demonstrate the process of Dijkstra's algorithm and Kruskal's algorithm.
Instructions
• Download the file Assignment3-Source.zip from Brightspace. The
contents of this file include DijkstraLabeller.java and
KruskalLabeller.java and all their dependent classes.
• When you study the weaknesses of the existing implementations, you
need to record these weaknesses and your analysis in your report.
• In your solutions of Task 1 and Task 2, a graph must be represented
by IGraph, and its vertices and edges must be represented by IVertex
and IEdge, which are defined in dsa.iface package. a Graph
implementation: EdgeListGraph is provided in dsa.impl package,
you should use it in your testing to hold your graph data.
• You can design your own returned data type to hold any data you need
for the next step to visualize graphs.
• This assignment requires you to do some independent research
outside of what is directly covered in the lectures. For example, two
chapters in Goodrich and Tamassia’s book are suggested to read, i.e.,
Chapter 9.5 Adaptable Priority Queues, Chapter 14.7.3 Disjoint
Partitions and Union-Find Structures. You can learn the solutions
provided by these chapters and then make your own solutions.
• When testing your implementation and making comparisons, you
should compare their efficiencies at different graphs and record the
results and analyze them in your report.
• In the task of visualization, you can use any java-based components.
• You should summarise the studies for graph visualization and briefly
depict your solution. It is essential to put critical screenshots of the
visualization produced by your program into the report.
Submission
This is an individual assignment. Therefore, all code and the report
must be written by yourself. Assignment 1 contained some advice
about avoiding plagiarism in programming assignments.
• Submit a zip file to Brightspace, which should include all java files,
libraries, and data used in your project. All code should be wellformatted
and well-commented to describe what it is trying to do.
• Submit a pdf report to Brightspace. This report should be a humanreadable
document (i.e., do not simply include code). In your report, it
is recommended to have the following essential topics, but not limited:
o Record the weaknesses of the existing implementations and
provide your in-depth analyses.
o Depict any tricks (novel or different ideas) used in your solution.
o Document the testing strategies and record results and provide
your analyses.
o Include a short literature review about Java-based graph
visualization.
o Depict your visualization solution.
o List newly added java classes, and describe their functionalities.
• The pdf file of your report must be submitted as a separate file, i.e., it
cannot be compressed into the zip file with your code or data, for the
purpose of originality checking.

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图