代做COMP3670: Introduction to Machine Learning代做留学生SQL 程序

Research School of Computer Science Assignment 5 Theory Questions
COMP3670: Introduct
ion to Machine Learning
Question 1 Properties of Eigenvalues (5+5=10 credits)
Let A be an invertible matrix.
1. Prove that all the eigenvalues of A are non-zero.
2. Prove that for any eigenvalue λ of A, λ−1 is an eigenvalue of A−1.
Question 2 Properties of Eigenvalues II (10 credits)
Let B be a square matrix. Let x be an eigenvector of B with eigenvalue λ. Prove that for all integers
n ≥ 1, x is an eigenvector of Bn with eigenvalue λn.
Question 3 Distinct eigenvalues and linear independence (20+5 credits)
Let A be a n× n matrix.
1. Suppose that A has n distinct eigenvalues λ1, . . . , λn, and corresponding non-zero eigenvectors
x1, . . . ,xn. Prove that {x1, . . . ,xn} is linearly independant.
Hint: You may use without proof the following property: If {y1, . . . ,ym} is linearly dependent
then there exists some p such that 1 ≤ p < m, yp+1 ∈ span{y1, . . . ,yp} and {y1, . . . ,yp} is
linearly independent.
2. Hence, or otherwise, prove that for any matrix B ∈ Rn×n, there can be at most n distinct
eigenvalues for B.
Question 4 Properties of Determinants (10+15=25 credits)
1. Prove det(AT ) = det(A).
2. Prove det(In) = 1 where In is the n× n identity matrix.
Question 5 Eigenvalues of symmetric matrices (15 credits)
1. Let A be a symmetric matrix. Let v1 be an eigenvector of A with eigenvalue λ1, and let v2 be an
eigenvector of A with eigenvalue λ2. Assume that λ1 6= λ2. Prove that v1 and v2 are orthogonal.
(Hint: Try proving λ1v
T
1 v2 = λ2v
T
1 v2. Recall the identity a
Tb = bTa.)
Question 6 Computations with Eigenvalues (3+3+3+3+3=15 credits)
Let A =
[−1 2
3 4
]
.
1. Compute the eigenvalues of A.
2. Find the eigenspace Eλ for each eigenvalue λ. Write your answer as the span of a collection of
vectors.
3. Verify the set of all eigenvectors of A spans R2.
4. Hence, find an invertable matrix P and a diagonal matrix D such that A = PDP−1.
5. Hence, find a formula for efficiently 1 calculating An for any integer n ≥ 0. Make your formula
as simple as possible.
1That is, a closed form. formula for An as opposed to multiplying A by itself n times over.

热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图