代写MSc/MPhil Data Analysis Assessment代做留学生R程序

MSc/MPhil Data Analysis Assessment

Attitudes to Immigration in Contemporary Britain

Due: 12 noon, Monday, Week 10 MT

Medium: PDF only

Submission: Inspera

A Professor has hired you to assist with the analysis of a UK social survey dataset on public attitudes toward immigration. The purpose of the project is twofold:

1. Identify which factors are associated with people’s views about immigration, and

2. Quantify the strength and direction of these relationships.

The Professor does not have time to carry out the analysis themselves and is relying on you to examine the data carefully, justify your analytical decisions, and summarise your findings clearly. You are expected to:

Interrogate the dataset thoroughly, using appropriate descriptive and inferential methods.

Explain the analytical choices you make (e.g., how you structure models, which variables you include).

Present well-designed tables and figures that support your conclusions.

Avoid raw, unedited R output. The Professor has a strong aversion to copy-and-paste console dumps; all results must be formatted clearly and thoughtfully.

Produce a coherent narrative that explains what predicts attitudes toward immigration and how strongly.

Draw conclusions grounded strictly in your analysis of the dataset. A literature review is not required and will not be assessed.

Your final report should be no more than 3000 words, excluding tables and figures. Headings, subheadings and figure/table captions do not count toward the word limit.

A bibliography is not required; you should not include one. You must include, in an appendix, all R code used to generate your results. The appendix is not included in the word count.

This code should be commented clearly, so the purpose of each block is immediately obvious.

If you are unsure about how to treat a variable, structure an analysis, present a result, or choose a model, you must make your own decision. The ability to do this independently is part of what is being assessed.

Assignment Dataset Allocation

For the purposes of this assessment, students are divided into two groups.

Your allocated dataset depends on your birth month:

•     If you were born in January–June, you must work with dataset_ 1.RDS

•     If you were born in July–December, you must work with dataset_2.RDS

This allocation is fixed and you must use the dataset assigned to you.

The file you have been assigned already contains only your allocated cases; the subset variable is for internal use only and you can ignore it.

Codebook (same for both datasets)

serial

5-digit numeric ID for each respondent.

subset

1 = Dataset 1

2 = Dataset 2

age

Age in whole years (18-99).

female

1 = Female

0 = Male

urban

1 = Urban area

0 = Rural area

london

1 = Lives in London

0 = Does not live in London

bornUK

1 = Born in the UK

0 = Born outside the UK

graduate

1 = Degree-level qualification

0 = No degree

renter

1 = Rents their home

0 = Owns their home (including mortgage)

contact

1 = Has meaningful contact with immigrants

0 = No meaningful contact

occ_class

Occupation group:

1 = manager_prof

2 = intermediate

3 = working_class

hh_inc

Gross household income (£ per year). Top-coded at £200,000.

imm_att5

Attitude toward immigration (1-5 scale):

1 = Very bad for Britain

2 = Quite bad

3 = Neither good nor bad

4 = Quite good

5 = Very good for Britain

(Higher values = more favourable)

zodiac

Birth sign (categorical):

1 = Aries,

2 = Taurus

3 = Gemini

4 = Cancer

5 =  Leo

6 =  Virgo

7 = Libra

8 = Scorpio

9 = Sagittarius

10 = Capricorn

11 = Aquarius

12 = Pisces

AI / LLM USE POLICY FOR THIS ASSIGNMENT

You are permitted to use LLMs (ChatGPT, Claude, Copilot, etc.) under the following conditions:

1. You may use an LLM to help you with:

debugging your R code (e.g., “Why am I getting this error?”)

reminding you of R syntax (e.g., “How do I make a scatterplot?”)

general conceptual understanding (e.g., “What does R-squared mean?”)

explaining an output that you have already generated (e.g., “Here is my regression table — what is a slope coefficient?”)

These uses are acceptable as long as the analysis is your own, based on the dataset provided.

2. You may NOT use an LLM for:

running or interpreting analyses directly from the assignment instructions without looking at your own data

writing your report for you

generating numerical results (means, SDs, p-values, correlations, regression coefficients, etc.)

inventing interpretations that do not match your actual output

selecting variables or describing patterns without referring to the actual dataset If your report contains interpretations or claims that do NOT match your submitted R output, this will be treated as academic misconduct.

3. All numerical results must come from your own R analysis of the provided dataset.

4. All figures and tables must be produced by your own script

Screenshots or AI-generated plots are not acceptable.

5. You are responsible for the accuracy of everything you submit.

If you use an LLM to help explain something, you must still check:

•     the meaning is correct,

•     the interpretation fits your actual numbers,

•     the description matches your actual plot,

•     nothing contradicts your analysis.

6. Your submitted R script. must run and reproduce all numbers in your report.

If your text and your script. do not match, that will be taken as evidence that you did not do the analysis yourself.

In short:

AI tools may help you understand and debug your work. They may NOT replace your statistical analysis, your interpretation, or your judgment. Your report must reflect your own engagement with the dataset and the course material.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图