代做ME 370 Fall 2025代做R语言

ME 370 Fall 2025

Due (12/18/2025)

Instructions:

1- You are allowed to work in groups of up to four students.

2- Groups can be formed from students in different sections. Please ensure you list each student’s section in the report.

3- Only one report and one m-file per group should be submitted.

4- List all members' names in the report and the m-file.

5- Include a statement in your report clearly describing the contribution of each member. (-10 points if not included)

6- Thereport should be typed in Word—NO HANDWRITTEN REPORTS ALLOWED.

7- Include your plots in the report.

8- Make sure your code is working before uploading it to Canvas. IF CODE DOES NOT RUN, YOU'LL AUTOMATICALLY LOSE 50% OF THE PROBLEM'S GRADE.

9- Documents submitted past the deadline will not be accepted.

10- Do not include your MATLAB code in the report

NOTE: For questions about MATLAB, please contact your class TA. For any other inquiries, feel free to ask me.


Problem 1:

The shear building structure is a mechanical system with an infinite number of DOF, but it can be modeled as an equivalent spring-mass system, thereby creating a lumped mass system. This is commonly done to facilitate analysis, since in some engineering applications, the parameters of interest are the frequency and vibration modes. The minimum number of coordinates necessary to describe the motion of the lumped masses and rigid bodies defines the number of degrees of freedom  of the  system.  The  system  can  be  modeled  as  unidimensional  due  to  its  vibration characteristic (i.e., the horizontal vibration is more representative than the others). A three-story shear building is studied and modeled as a 3-DOF spring-mass system. Figure 1 shows a schematic of the shear building structure.

Figure 1. a) Experimental model ofa three-story shear building; and b) Equivalent spring-mass model.

a.   Use Newton’s second law of motion to derive the system’s EOM. (Show FBDs and all

derivations to receive full credit) (10 points)

b.   Assume:

m1 = m2 = m3 = 5,000 kg

k1 = k2 = k3 = k = 2 kN/m

Using modal analysis, calculate the steady-state responses for:

Note: Both forces are applied to the first floor

1)  F(t) = 300 cos 20t N (10 points)

2)  F(t) = 300δ(t) N (10 points)


•   For each case, clearly show your steps in your report and MATLAB code (your code should be organized similarly to “Example_431.m”).

•   Include your MATLAB code with your submission (as a separate m-file). If your code doesn’t work, you will automatically lose 50%.

•   Your code should plot both modal and physical solutions.

c.   List the system’s natural frequencies in order and draw conceptually the three mode shapes ofthe equivalent lumped mass system. (5 points)

d.   In reality, the material will exhibit some damping, preventing unbounded resonance responses. Assume a small damping ratio of ξ  = 0.02 for all three modes. Redo the steady-state analysis, including damping, for the same input forces from part b. (15 points)


Problem 2:

With the development of social economy and construction technology, tall buildings are increasingly built in large cities, which are sensitive to earthquake and wind excitations. A tuned mass damper (TMD) is one of the most traditional vibration control devices, usually consisting of mass, stiffness, and damping elements. A pendulum TMD (PTMD) is a kind of horizontal TMD usually used to protect a tall building against horizontal vibration, where the pendulum provides the stiffness element ofTMD. The natural frequency of PTMD is a single value corresponding to the pendulum's length. You are helping design vibration control for a 3-story building in downtown Philadelphia (usually used for high buildings, but we will make an exception in this project). Your goal is to prevent excessive sway during storms and small seismic events. Using the shear-building model and a pendulum TMD mounted on the top floor, your team must tune the PTMD to ensure the upper floor motion stays below safe thresholds

Figure 2. a) A simplified building model including a pendulum swinging from the top lumped mass as a tuned mass damper for motion reduction. b) The equivalent spring-mass-pendulum system used to tune the tuned-mass-damper.

a.   Derive the system’s EOM using the Euler-Lagrange method. Clearly show the system's kinetic and potential energies. Show all your derivations to receive full credit. (15 points)

b.   Choose the values for m4  and L that will keep the oscillations ofthe third floor around cm peak-to-peak in response to the impulse force from problem 1 hitting the first floor. Keep in mind that  0 < m!  ≤  3000 kg and 0 < L≤  1 m. (15 points)

c.   Repeat part b, including a damping ratio ξ  = 0.02 for all three modes. Comment on the results and how they differ from part b. (15 points)

d.   In your own words, describe what makes the PTMD reduce the oscillations ofall stories and discuss how the oscillations are affected by the values of m4 and L. (5 points)





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图