代做BSTA011 - BUSINESS STATISTICS代写Java编程

BSTA011 - BUSINESS STATISTICS

GROUP ASSIGNMENT

This assignment is designed to assist you to achieve the following learning outcomes:

a.   Apply appropriate quantitative analytical techniques to qualify, support, select and evaluate data as information for use in business decision-making.

b.   Interpret and communicate results of quantitative analyses for business decision-making.

c.    Use a computer-based data analysis package (i.e. Excel) to critically analyse data.

Assignment value: 20%

Group of 3-5 students. The group members must be from the same tutorial. Your tutor will put you in groups in tutorials. In the event that you cannot find any group, let your Lecturer/tutor know asap. You are NOT allowed to complete this assignment by yourself or in groups of less than 3 members.

Submission:

Submission

Due date

What to submit

How to submit

Soft copy

1 1:59 PM

Sunday, 07/12/2025

1.

2.

3.

Submit cover page with group

number, contribution

percentages and signatu res in your report and

submit as one document (word file or a PDF)

The business reports Excel file showing all calculation

CANVAS

Your team have been accepted as interns at Landcom. Landcom manages strategic and complex residential projects. Your first job is to conduct an analysis based on the recent sales price of the three suburbs of New

South Wales for the years 2021, 2022 and 2023 from All Homes or real estate. Your team needs to perform a comprehensive statistical analysis of the suburbs, which your tutors will suggest.

TASK 1: LOCATE AND SELECT DATA

Q1. Collect and Compute the appropriate descriptive statistics of the “sold house price”, “Sold house land size”, and “sold house number of rooms” for the years 2021,2022 and 2023 of the suburban selected by your tutor. The descriptive statistics measures include central tendency (mean), variability (standard deviation), Mode, Quartiles, Range, and Interquartile range and show the infographics (e.g., pie chart, bar chart, etc.) of 2021, 2022 and 2023 data for the following variables:

(a) Sold house price

(b) Sold house land size

(c) Sold house number of rooms

The sample size should be at least 30 for each year (2021, 2022 and 2023) for each suburb. So, for one suburb, the total at least the number of houses recorded should be 90 for a three-years period.

TASK 2: DATA DESCRIPTION AND ANALYSIS

Q2. Based on the descriptive statistics from Q1, briefly comment on the central tendency and variability of three suburbs for 2021, 2022 and 2023

Combine data from all group members in an Excel spreadsheet and use this collated sample to answer the following questions.

Q3. Choose one suburb and perform. the following task from 2021 and 2022 data: The historical data indicates that the high house prices (more than the average price; You should have the average house price of each suburb from question 1) are more likely to be associated with land size as compare to low house price (Below average house price). What is the probability of a high house price given that the house land size is extended (more than the average land size for the suburb)? What is the probability of low house prices given that the land size is non-extended (Land size below average)? Analyse your collated sample and examine whether it is indeed the case. Show the steps in your analysis (including justification for choice of techniques used and all calculations) and report your findings clearly and use a probability matrix.

Table: Probability matrix for 2021

High house price

Low House price

Total

Extended

Land size

Non-

extended

land size

Total

Grand total

Table: Probability matrix for 2022

High house price

Low House price

Total

Extended

Land size

Non-

extended

land size

Total

Grand total

Q4. (a) Choose one suburb and perform the following task from 2021,2022 and 2023 data. It is a common perception that the land size and the number of rooms available influence the house price. Investigate  the  following  relationships  using  multiple  linear  regression  analysis.  (i) Explore the relationship between land size and the house price, (ii) Explore the relationship between the available number of rooms and the house price. Use the multiple linear regression model and interpret the  result  of  p-values  of  independent  variables,  multiple  R,  Adjusted  R-squared, physical meaning of co-efficient and significance of fstatistics.

(b) Using the suburb selected for part (a), conduct a regression analysis with the house prices and external economic factors (cash rate target, inflation rate, and unemployment rate) for the years 2021, 2022, and  2023,  utilizing  data  from  the Reserve  Bank  of  Australia  (RBA). Apply  multiple  linear regression models to examine the relationships between these variables.

Interpret the statistical measures derived from the regression models, including the multiple R, adjusted R-squared, and the significance of the F-statistic. Evaluate the importance of the independent variables by interpreting their p-values.

Develop two distinct regression models for task (a) and (b).

Q5. Choose one suburb and perform. the following task from 2022 data: Analyze the frequencies of two variables (House price level and land size) with multiple categories to determine whether the two variables are independent. Conduct Chi-Square Hypothesis test at 0.05 level to ensure that, whether house price level and land size are independent. Use the following table for Chi - square test:

Land size

House price level

Total

High house price

Low house price

Extended land size

Non-Extended land

size

Grand total

Q6. What is the average house price of each selected suburb for 2023 (Use the house price average from question 1 and construct a 95% confidence interval for the average house price for each selected  suburb  of  New  South  Wales  for  the  year  2023)?  Note:  The  population  standard deviation of house prices in New South Wales is $20,000.

Q7. A recent study has claimed that the average house price in New South Wales is $1,187,200. Use your collected data to test this claim for each selected suburb for the year 2023 (Note: Use the sample statistics from question 1). Note: The population standard deviation of house prices in New South Wales is $20,000. Is there any evidence to suggest that the average house price has changed at a 5% significance level? Report your findings with clear conclusions and all supporting calculations.

Q8. Develop a rating for the three suburbs assigned to you, based on the provided crime statistics from Sydney Suburban Review . Complete the following tasks:

(i) Define a rating scale for the suburbs based on crime rates. For example:

A: Suburbs with the lowest crime rates.

B: Suburbs with moderate crime rates.

C: Suburbs with the highest crime rates.

To establish the ratings, calculate the average crime incidents for NSW based on 408 suburbans crime average incident provided on Sydney Suburban Review . Suburbs with crime rates above the average should be categorized as C, those around the average as B, and those below the average as A.

(ii)Create visual representations, such as bar charts or maps, to display the crime ratings for each suburb.

(iii) Investigate the influence of crime rates on house prices. Provide a well-supported argument based on relevant evidence and research findings.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图