代做MTH303 Computer-Based Coursework帮做R语言

MTH303 Computer-Based Coursework

Announcement & Submission Rules

• You are required to complete the MTH303 coursework using the provided “WORD TEM- PLATE FOR THE MTH303 COURSEWORK”.

•  Please submit a  single  PDF file exported from the template; the maximum file size is 5MB.

•  This coursework must be completed independently.  Academic integrity applies. You must name the file with your student number as follows: Studentnumber.pdf.

How to present your work

For every sub-question, include:

(i) Question number (e.g., “Task 2.3”).

(ii) R code (if asked) used to answer the question.  A screenshot of the code works.

(iii) Outputs/plots/tables (if required) that the code produces.

(iv) Discussion/arguments (if asked).

Keep the four parts  together  under the  corresponding sub-question so the workflow is self-contained and easy to follow.

Label figures/tables (e.g., “Fig. 2.3a”) and refer to them in your discussion.

The deadline for submission of the coursework is Sunday 7th December at 11:59 PM.

Background

ABC Hospital is investigating factors that drive inpatient Length of Stay (LOS) and all- cause readmission. The analytics team extracted an encounter-level dataset and saved it as readmission .csv. Your role is to conduct a clear, defensible analysis and communicate insights for decision-making.

General Guidance

•  Core tasks focus on multiple linear regression (MLR) for LOS and a logistic GLM for read- mission.

• You may want to use methods or variations beyond those shown in lectures if you believe they improve the analysis; ensure they are well-motivated and clearly explained.  Notice that there is no requirement to go beyond the course coverage.

Keep your work reproducible; figures and tables must be labelled and referenced in text.

Data Dictionary

Column

Allowed values / type

LOS

Integer days (1–30)

Readmission .Status

{0, 1}

Age

Integer years (18–95)

Gender

{F, M}

Race

{White, Black, Hispanic, Others}

ER

Non-negative integer count

HCC.Riskscore

Positive continuous

DRG.Class

{MED, SURG, UNGROUP}

DRG.Complication

{MedicalNoC, MedicalMCC.CC, SurgNoC, SurgMCC.CC, Other}

Variable descriptions

LOS: Length of stay in days for the index admission.

Readmission.Status:  Binary outcome for all-cause readmission after discharge  (1=yes, 0=no).

Age: Patient age in years.

Gender/Race: Recorded administrative categories.

ER: Number of emergency-room visits prior to the index admission.

HCC.Riskscore: A clinical risk severity score; larger values indicate sicker patients.

DRG.Class :   coarse clinical grouping of the case based on diagnosis and procedures. MED = medical (non-surgical) admissions; SURG = surgical cases; UNGROUP = spe- cial/uncategorised cases not falling cleanly into MED or SURG.

DRG.Complication :  severity flag within DRG. MedicalNoC/SurgNoC = no notable complications for medical/surgical cases; MedicalMCC.CC/SurgMCC.CC = has (ma- jor) complications/comorbidities; Other = miscellaneous/rare codes.

Part A: Multiple Linear Regression for LOS

Task 1 (10 pts): Visualisation & transformation

1.1  (5  pts) Plot a histogram of LOS and comment on its skewness.  If skewed, choose a simple transformation, justify briefly, and use the transformed version for all modeling in Part A.

1.2 (5 pts) Choose one categorical predictor and draw a suitable plot of transformed LOS by groups; comment briefly.

Task 2: Modeling and checks

2.1 (4 pts) Baseline model (no interactions). Fit on the transformed response using Age  +  ER  +  HCC.Riskscore  +  Gender  +  Race  +  DRG.Class  +  DRG.Complication

and name the model as m0.

2.2  (6  pts) Using only summary of m0, drop variables that are not significant at the 5% level.  Refit and report the  summary of the reduced model m red.  Discuss briefly whether the goodness-of-fit of m red is improved compared with m0.

2.3  (12 pts) Generate diagnostic plots on the reduced model m red and comment whether basic assumptions appear reasonable.

2.4 (12 pts) Detect the existence of any unusual data. Flag and list any outliers using |ri|  > 3 for standardised residuals, any high leverage if hii  > 4h, where h = (p + 1)/n, and any influential points using your choice of benchmark.

2.5 (4 pts) Assess multicollinearity for the reduced model m red with VIF and use 5 as the threshold. Comment on the potential impact of multicollinearity issue on inference.

2.6 (8 pts) Apply a selection method (e.g., AIC/BIC stepwise; your choice) on the baseline model m0 and name the selected model as m sel.  Compare the selected model m sel with the reduced model m red from 2.2 using some appropriate criteria.

Part B: GLM for Readmission

3.1 (6 pts) Fit a baseline Generalized Linear Model, namely g0, with binomial family and logit link using

Age  +  ER  +  HCC.Riskscore  +  Gender  +  Race  +  DRG.Class  +  DRG.Complication Report the summary of g0.

3.2 (6 pts) Using summary only, remove variables not significant at the 10% level. Refit and report the updated model drop g. Compare the goodness-of-fit between g0 and drop g.

3.3 (10 pts) Choose appropriate residuals for the updated model and make residual plots to check and justify the appropriateness for the random component.

3.4  (6  pts) Detect outliers using the benchmark of 2.5, and drop these points (assume we could remove them directly). Refit the model on the reduced dataset and name it fin g.

3.5  (6 pts) Create a new observation at your preference  (show the full data.frame) and compute the predicted probability.

Part C (10 pts): Brief summary

In 200 words or fewer, summarise what you did, what you found, and one implication for hospital practice. Mention one limitation.

Reminder:  Submission Checklist

Use the Word template; export a single PDF 5MB.

Labelled figures/tables with references in text.

• Name the file with your student number, i.e., Studentnumber.pdf ( such as “12345678.pdf”).






热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图