代做DTS201TC Pattern Recognition and Computer Vision代写留学生Python语言

Module code and Title

DTS201TC Pattern Recognition and Computer Vision

School Title

School of AI and Advanced Computing

Assignment Title

Coursework (Individual technical report)

DTS201TC

Coursework

Students

Please save your assignment in a PDF document, and package your code as a ZIP file. Submit both the technical report and the code  file via Learning Mall Core to the appropriate drop box. Electronic submission is the only method accepted; no hard copies will be accepted.

You must download your file and check that it is viewable after submission. Documents may become corrupted during the uploading process (e.g., due to slow internet connections). However, students themselves are responsible for submitting a functional and correct file for assessments.

Weight for the individual coursework: 50% Overview

In this coursework, the student needs to complete a technical report about wine origin prediction using K-means clustering classifier and mean feature ranking method.

Learning Outcomes:

C. Carry out classification vs. description, parametric and nonparametric classification, supervised and unsupervised learning

D. Utilise of contextual evidence, clustering, recognition with strings, and small sample-size problems

Avoid Plagiarism

• Do NOT submit work from others.

• Do NOT share code/work with others.

• Do NOT copy and paste directly from sources without proper attribution.

• Do NOT use paid services to complete assignments for you.

Technical Report Requirements:

Machine learning (ML) or Artificial Intelligence can learn from training data and it has demonstrated greater accuracy in nonlinear classifications and regressions. The student needs to load wine dataset to determine the origin of wines using Python packages and to use mean method to rank 13 features of the wine dataset. The wine dataset contains the results ofa chemical analysis of wines grown in three different regions in Italy. Specifically, it includes 13 attributes derived from measurements of various constituents found in the wines. These attributes typically include factors like alcohol content, acidity levels, and concentrations of different chemical compounds such as phenols and flavonoids. These attributes provide valuable insights into the chemical composition of wines and can be utilized for wine classification tasks.  The dataset has  178 samples with 13 dimensions. This is defined as multiple classification (e.g., label= 0, label=1 and label=2). The student needs to rank the features using N-fold cross validation (e.g., N=3). One machine learning model (K-means clustering classifier) is tested to rank the 13 features using the mean feature ranking method. Please notice that the K-means Clustering classifier is an unsupervised learning model. The true labels of samples are used to calculate the prediction performance. Finally, the student needs to write a technical report (around 1000 words) to include the following sections:

Report Title: Wine Origin Prediction Using K-means Clustering with Mean Feature Ranking Method

Section 1: Introduction (10 marks)

The student needs to give a clear project background and project objectives in the section. The student needs to give the references (e.g., >=5) for the literature review in the report.

Section 2: The student needs to give the classification system design using mean feature ranking method. (20 marks)

2.1 The student needs to give a flowchart of the classification system design and description of the main steps. (10 marks)

2.2 The student needs to give a correct description of the mean feature ranking method. (10 marks) Section 3: Experimental results with analysis (40 marks)

3.1 The student needs to write a Python code to plot the first two dimensions of the features with different colors for three class labels. (10 marks)

3.2 Let’s fix the number of K=3 for K-means clustering classifier. The student needs to give the classification results using K-means clustering and the original 13 features (e.g., 13 features).  The student needs to write a Python code to implement mean feature ranking method using the K- means (K=3) clustering classifier and the 3-fold (N=3) cross validation and to list the results in a table (e.g., Table 1). (20 marks)

Table 1: Wine data feature ranking results using K-means (K=3) clustering classifier and mean

feature ranking method

Accuracy using 3-fold cross validation and 13 original features

Accuracy using 3-fold cross

validation and mean feature ranking method

Accuracy

difference

Feature

ranking

e.g., Overall accuracy=

80%

e.g., accuracy (feature 1) = 60%

e.g., 20%

e.g., 2

e.g., Overall accuracy=

80%

e.g., accuracy (feature 2) = 70%

e.g., 10%

.

.

.

.

.

.

.

.

.

e.g., Overall accuracy=

80%

e.g., accuracy (feature 13) = 65%

e.g., 15%

3.3 The student needs to give a correct analysis based on test results. (10 marks)

The student needs to analyse the experimental results. If the mean feature ranking algorithm works well, the student needs to give a detailed analysis. Please discuss why K-means clustering is a nonparametric classification model and what are advantages and disadvantages using the K-means clustering classifier for the experiments in the section.

Section 4: Conclusion (20 marks)

4.1 The student needs to conclude what are advantages and disadvantages using the mean feature ranking method based on the experimental results. (10 marks)

4.2 The student needs to discuss if there are any better feature ranking methods in the section. The student needs to show that he/she has a deep understanding of the project. (10 marks)

Section 5: References and report quality. (10 marks)

The student needs to read 5 or more than 5 reference papers for the technical report. Please use the same format for the references.  The student needs to avoid typing error/errors in the report and follow the instructions to write the report with clear and good English.

Note: The student needs to write around  1000 words for the technical report and provide the Python codes.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图