代做DTS305TC Natural Language Processing Coursework 2代写Python编程

DTS305TC Natural Language Processing

Coursework 2 (Individual Assessment)

Due: 5:00 pm China time (UTC+8 Beijing) on Fri. 19. Dec. 2025

Weighting: 60%

Maximum score: 100 marks (100% individual report)

Assessed learning outcomes:

C. Implement deep learning models and evaluate them based on performance metrics.

D. Develop skills of using NLP models and techniques in real-world applications.

Overview

Document classification is a core NLP task that involves automatically categorizing written content into a predefined set of classes or categories. This process is crucial for managing the vast amounts of textual data generated daily across various domains, including news, legal documents, medical records, and online content. The key aspects of document classification include: Text Representation, Feature Extraction, Model Selection, Deep Learning Approaches, Performance Evaluation, and so on.

This task faces challenges such as handling imbalanced datasets, dealing with the nuances of human language including sarcasm and context, and adapting to domain-specific vocabularies and terminologies.

Tasks

You are required to use the slides and Internet resources to learn the detailed knowledge of document classification problems, and use the Python programming language to complete one document classification report.

1. Background Knowledge (10 Marks)

Write the following content in text form. in the report.

(1) Please provide 3 real-life application scenarios that require document classification methods. (6 Marks)

(2) Please analyze why document classification methods, rather than other natural language processing methods (information retrieval, document clustering), are the most suitable for these 3 application scenarios. (4 Marks)

2. Algorithm Design (20 Marks)

Write the following content in text form. in the report.

(1) Provide two basic processes for a document classification system. (5 Marks/system x 2=10 Marks)

(2) Provide pseudocode for the algorithms (one machine learning and one deep learning) used in the document classification system in 2(1). (5 Marks/algorithm x 2=10 Marks)

3. System Implementation (40 Marks)

Use Python to implement the system described in Section 2 with the following functions:

(1) Main function: control the startup and flow of the entire document classification system. (5 Marks)

(2) User input function: allow continuous user input of text for classification via the console. (5 Marks)

(3) Database input function: read a local text library from a document folder. (5 Marks)

(4) Text preprocessing function: preprocess the read documents and use 80% as training samples and 20% as validation samples. (5 Marks)

(5) Classification algorithm 1: train Model 1 on the training samples using classification algorithm 1. (5 Marks)

(6) Classification algorithm 2: train Model 2 on the training samples using classification algorithm 2. (5 Marks)

(7) Classification algorithm performance: output the model metrics of Model 1 and Model 2 on the validation samples. (5 Marks)

(8) Output function: output the classification results of Model 1 and Model 2 for user input. (5 Marks)

4. Results Analysis (20 Marks)

Test your system and record the results; write the following content in text form. in the report.

(1) Test the developed document classification system using ten new text examples with your own labels. (5 Marks)

(2) Use recall to analyze the two different classification algorithm results (algorithm 1 and algorithm 2). (5 Marks)

(3) Use precision to analyze the two different classification algorithm results (algorithm 1 and algorithm 2). (5 Marks)

(4) Use F1 to analyze the two different classification algorithm results (algorithm 1 and algorithm 2). (5 Marks)

5. Conclusion (10 Marks)

Write the following content in text form. in the report.

(1) Describe how your designed and implemented document classification system addresses the three application scenarios in Section 1. (5 Marks)

(2) Report quality, including report format, code quality, and references. (5 Marks)

Submission

You must submit the following files:

l A PDF file named Student_ID.pdf containing a cover letter with your ID and name.

l A ZIP file named Student_ID.zip containing your program implementation and output files (e.g., dataset, DCS.py, precision.csv, recall.csv, F1.csv).




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图