代做AAE5208 Satellite Engineering代写C/C++语言

GMAT Final Lab:

A Satellite Constellation for Peak-hour Traffic

Monitoring in Hong Kong

AAE5208 Satellite Engineering

Academic Year 2025/26

Lab Overview

Deadline: 10 December 2025

Group Size: 2 students

Deliverables: GMAT scripts + 6-page technical report, submission through Blackboard

1 Mission Statement

Your team is tasked with designing a satellite constellation to monitor vehicular traffic in Hong Kong during peak hours  (07:00—09:00  and 18:00—20:00 local time,  UTC+8).   The goal is to maximize coverage, spatial resolution, and cost-effectiveness for a minimum two-year operational lifetime. The target area is a 50 km × 50 km region centered on Hong Kong (22.3。N, 114.2。E). During each critical window, the system must provide at least two passes over the target area. The mission starts on 19 November 2025, 00:00:00 UTC+8.

2 Technical Requirements

2.1    Coverage and Mission Duration

The constellation must ensure daily coverage of the Hong Kong region during specified peak hours (07:00—09:00 and 18:00—20:00, Hong Kong Time), with a revisit rate of at least two passes per window. The mission should be designed for a minimum operational lifetime of two years.

2.2 Launch Constraints

All satellites will be launched from Hainan Wenchang Space Launch Center (19.6145。N, 110.9511。E, sea level) using the Changzheng-12 (CZ-12) launch vehicle. The CZ-12 can deliver up to 12,000

kg to a 200 km low Earth orbit (LEO), 10,000 kg to 300 km LEO, and 6,000 kg to 700 km LEO. For intermediate altitudes, use linear interpolation to estimate payload capacity.

2.3 Satellite Specifications

Each satellite must have a dry mass (excluding propellant) of 500 kg, with a total launch mass ranging from 1,000 kg to 4,000 kg. The propulsion system should provide a specific impulse of 320 seconds (bipropellant), resulting in a delta-V capability ranging from approximately 2,168 m/s to 6,511 m/s, depending on fuel load.

2.3.1 Propulsion System

Specific impulse  (Isp):  320 seconds (bipropellant system)

Delta-V capability:

                               (1)

where g0 = 9.81 m/s2

Minimum ∆V ≈ 2,168 m/s (1,000 kg total, 500 kg fuel)

Maximum ∆V ≈ 6,511 m/s (4,000 kg total, 3,500 kg fuel)

2.4    Performance Metrics

2.4.1 Spatial Resolution

The spatial resolution of a satellite imaging system determines the smallest distinguishable fea- tures on the ground. It is quantified by the ground sample distance (GSD), which represents the physical ground distance covered by one edge of a single pixel (assuming square pixels). For traffic monitoring applications, the spatial resolution must be sufficient to differentiate indi- vidual vehicles.  Therefore, the achieved spatial resolution should satisfy GSD 1.0 m.  The finer the resolution (smaller GSD), the better the system can distinguish between closely spaced vehicles and identify traffic patterns.  However, designing a lower altitude must consider the atmospheric drag effect. Please find a real-world satellite remote sensing camera and use it for your design. An extra requirement for the camera you use is that the attitude control capability is ±10  off-nadir pointing.

2.4.2 Swath

The swath of a satellite is the area on the ground that the satellite can scan and detect at one point in time.  Its dependency on the FoV is illustrated in Figure  1.   The swath width is the ground distance perpendicular to the satellite ground track, and the swath length is the ground distance parallel to the ground track.  For most Earth observation satellites, the swath width is designed to be longer than the swath length.  This is achieved by orienting the longer side of the camera sensor perpendicular to the orbital path, enabling the satellite to cover a larger area with each pass over the target region.  The swath area is the total ground area that the onboard instrument can capture in a single image.  Assuming the longer dimension is oriented perpendicular to the orbital path, the nadir-pointing swath width and length can be calculated as:

Wnadir = 2h · tan(θ)                                                                                                                    (2)

Lnadir = 2h · tan(θ) · pixel number of the shorter dimension/pixel number of the longer dimension      (3)

where h is the satellite altitude, θ is half-cone field of view of cameras.

2.5    Additional Constraints

2.5.1    Orbital Considerations

Atmospheric drag becomes significant below 300 km, so your altitude selection must be justified. Certain orbits, like the sun-synchronous orbit, provide more consistent lighting. You may assume adequate solar arrays and batteries.  However, it would be great if you could also consider the effect of the eclipse on the power budget, either in your design or by including it in your report for discussion.

Figure 1: Sensor field of view and swath.

2.5.2    Cost Factors (Relative Units)

Cost per satellite: Csat = 50 + 2 × mtotal  (million HKD, where m in tons)

Cost for launch:  Claunch  = 80, 000 HKD per kg (CZ-12 launch cost)

Total mission cost: Ctotal = mtotal × Claunch + nsats × Csat

You need to minimize this while meeting techinical requirements.

3 Deliverables

3.1 Part 1: GMAT Simulation Scripts (40%)

You need to provide one or more well-commented GMAT scripts demonstrating:  (1) Constella- tion Setup, including initial orbit parameters for all satellites, spacecraft properties (mass, fuel, propulsion), Propagator settings, etc., and (2) Orbit Insertion & Phasing, including launch ve- hicle ascent trajectory (simplified to parking orbit), inclination change maneuvers (if required), Orbit transfers  (if required), phasing maneuvers to establish constellation geometry, delta-V budget, etc.

3.2 Part 2: Technical Report (60%)

Maximum 6 pages (excluding title page and references), Single-line spacing, Times New Roman 12 point font, 2.5 cm all round. Please rename your file as ”Your name + student ID + GMAT Report”.

3.2.1 Required Sections

1. Executive Summary Briefly describe your constellation design, key performance metrics, and cost summary.

2. Constellation Design Rationale Justify your choices for orbit altitude, inclination, RAAN distribution, and others.  Explain the number of satellites and phasing strategy, using Walker notation i : t/p/f, if applicable.  Discuss trade-offs between resolution, coverage, and cost.

3.   Mission Analysis Outline your launch strategy, including the number of launches and payload distribution. Provide a breakdown of the delta-V budget for all maneuvers, if necessary, including orbit insertion, inclination changes, phasing, and station-keeping.  Analyze coverage performance, revisit times, access percentages, and any coverage gaps. Present achieved spatial resolution and swath width. Include ground track visualizations over Hong Kong.

4.  Results & Performance Metrics Summarize orbital parameters, mass and fuel alloca- tion, delta-V usage, resolution, swath width, and access statistics in a table. Provide a detailed cost analysis and compare your design against the mission requirements.

5. Optimization Discussion Discuss  alternative  designs  considered,  sensitivity  analysis (e.g., impact of adding or removing satellites), and potential future improvements.

6. Assumptions & Limitations List all assumptions, known limitations, and risk mitigation strategies.

Appendix (not counted in page limit) GMAT script. snippets (key sections only), Detailed calculation examples, Additional figures if needed, etc.

4    Grading Rubric

Category Points

Criteria

Part 1: GMAT Scripts

Script functionality 15

Completeness                       20

Script/code quality 5

Scripts run without errors, producing correct outputs, including visualizations like orbit views The required scenario implemented

Well-commented, organized, readable

Part 2: Technical Report

Result & performance 10

All objectives met under given constraints

Design justification 15

Clear rationale for constellation architecture

Mission analysis                  15

Thorough coverage, maneuver, and performance analysis, calculations preferred

Optimization 5

Evidence of trade-off analysis and optimization efforts

Technical accuracy 10

Correct calculations and physics

Presentation 5

Clear writing, professional figures, proper for- matting, including citations

Total 100

Remember: Real satellite engineering involves balancing conflicting requirements. There’s no single correct answer.  Your job is to justify your design choices with solid analysis and clear communication.  You are also encouraged to take into consideration other factors, such as the mission schedule, which have not been spec fied in the require-ments.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图