代做Unloaded Three Phase Transformer调试SPSS

Electronics and Electrical Engineering

Power Systems / Electrical Energy Systems Laboratory

Unloaded Three Phase Transformer

1. Objective

The objective of this experiment is to study the effect of various transformer

connections on the losses and harmonic content of the primary current and voltage waveforms in a three-phase transformer with no connected load. Operation of the transformer under overvoltage conditions will also be observed.

2. Introduction

A large power system has a lot of relatively small transformers located close to the

customers. These small transformers spend most of their working life (40–60 years)

with minimal load and only a very small part of their working life operating close to

full load. Consequently the light load losses of these smaller transformers have a huge economic significance to the power system operator. The power system operator must make a trade–off between the initial cost of a transformer and the lifetime financial cost of the losses in the transformer. Clearly the cheapest transformer to buy (using the

least amount of material) is unlikely to have the lowest total lifetime cost of ownership.

 

In this experiment we will study some of the factors that influence the no-load losses of a typical distribution transformer.

Equipment

3-phase Power Supply (electronic)

Potential Transformer (Two)

3-phase Transformer

Current Transformer

3-phase Wattmeter

Digital Storage Oscilloscope

Digital Multimeter

Leads

3-phase Power Supply

The 3 phase power supply is an electronic source which can provide up to 42V line (24V phase) RMS.

The “Output Waveform” has three different settings:-

(a) “sine”:                    an ideal, balanced 3 phase sinusoidal supply, with no harmonics.

(b) “unbal sine”:         an unbalanced 3 phase supply with one phase reduced in amplitude (not used during this experiment).

(c) “sine +3rd”:           a balanced 3 phase supply with a significant amount of 3rd harmonic distortion.

This supply can provide up to 1A continuously and up to 2A for a few minutes before it gets too hot. Take care when operating to make sure that the current supplied is not too

great. Leave the green illuminated power switch ON to keep the internal fan running and turn the "Output" switch On and Off as required.

If the power supply overheats you will need to leave it ("Output" set to "Off") for about 15 minutes with the fan running before it cools sufficiently to allow further use.

3-phase Wattmeter

The 3 phase power meter has connections for power supply and load. Keep the neutral connection connected to the transformer star point to minimize measurement errors.

This meter measures and displays RMS quantities. The default display shows line

voltage, average line current, total power consumed and overall power factor. Pressing the red button will cycle the display through different measured values (individual

phase voltage, currents and power are the most useful). Power is on page 1, Line Currents are on page 3. Note carefully the displayed units of measure.

Transformer

The transformer that you will be testing is a scale model of a mass-produced

distribution transformer. The transformer is rated for a full load of approximately

200VA. Each phase has a primary with a tap changer and two independent secondary

windings. The primary tap changer allows operation with -5%, NOM(nominal), or +5% primary turns. Note that because of the core geometry, this transformer is NOT

perfectly balanced; the centre limb has two short flux paths and each outer limb has a long and a short flux path. In a power system each transformer of this type would be connected to the source differently so that the whole power system operates with a

balanced load overall.

Potential Transformers and Current Transformer

In a large power system the voltages and currents used are too dangerous to attempt to measure directly. To reduce the system voltages and currents to a safe level for

observation, potential and current transformers (also known as instrument

transformers) are installed at strategic locations. In this experiment you will use the

instrument transformers to observe the power transformer voltage and current

waveforms on an oscilloscope. Note the scaling factor printed on each transformer box. The current transformer connects with a jack plug to the circuit being observed. The

jack socket contains a switch to break the circuit and put the current transformer primary in series with the circuit.

The no–load current waveform. of an over–excited transformer will contain significant harmonic distortion, mainly third,fifth, and seventh harmonics. This can be explained in terms of magnetic saturation and hysteresis. On the one hand, a sinusoidal induced emf at fundamental frequency requires a similar sinusoidal variation of flux, which in turn requires a non–sinusoidal magnetizing current. On the other hand, a sinusoidal

magnetizing current produces non–sinusoidal flux and a corresponding non–sinusoidal emf. In a balanced, three–phase circuit, third harmonic components are co–phasal.

Accordingly, third harmonic currents do not add up to zero at the star point and a star– neutral connection provides a return path for 3rd harmonic currents.

Preliminary exercise: Sketch the fundamental sine waves of the three-phases, 120

degrees apart, and their third harmonic components on the same axis on graph paper in your laboratory book. This will show that the third harmonic components are co-

phasal.

3. Procedure

Measurements

During the experiment, the transformer will be connected in different ways and under different conditions. For each setup (described in the following pages), record each of the measurements in the list below.

Set  "Output" to "On" before taking measurements, and to "Off" when finished; try to minimise the amount of time that it is "On".

Using the Digital Multimeter:-

Primary Line Voltage "VRY"

Secondary No. 2 Line Voltage ("Vry" for Star-Star ; "Vr1r2" for Star-Delta) Primary Phase Voltage "VRN"

Secondary No. 2 Phase Voltage "Vrn" (not applicable for Star-Delta)

Using the Wattmeter:-

Primary Line Current "IR"

Primary Line Current "IY"

Primary Line Current "IB"

Total Power consumed (i.e. Power Losses)

Using the Potential Transformer and Digital Storage Oscilloscope:-

Primary Line Voltage "VRY"

Secondary No. 2 Line Voltage ("Vry" for Star-Star ; "Vr1r2" for Star-Delta) Phase-shift of Transformer ("VRY" to Sec2 "Vry" for Star-Star  ;

"VRY" to Sec2 "Vr1r2" for Star-Delta)

Primary Phase Voltage "VRN"

Secondary No. 2 Phase Voltage "Vrn" (Not applicable for Star-Delta)

Using the Current Transformer and Digital Storage Oscilloscope:-

Primary Neutral Current "IN"

Current in Delta-Connected Secondary No. 2 (Extended Star-Delta only)

Tabulate the results.

Ensure Primary Voltage measurements are made directly at the Transformer Primary  (For the "Extended Star" connections, the voltages should be higher than shown on the Wattmeter).

Use the printer to plot any waveforms which have harmonic content : these will be required for discussion, later.

Annotate the printouts so that you can identify them later.

3.1 Star-Star Connection

 

Fig. 1   Star-Star Connection

1)  3-Phase Power Supply setup

Set "Power" to "On"

Set "Output Level" to "max" (42V Line Voltage)

Set "Output Waveform" as requested, below.

2)  Transformer connection and setup

Before altering connections on the transformer, always ensure that the "Output" switch on the 3-phase Power Supply is set to "Off".

Connect the three-phase transformer as shown in Fig. 1 (Secondary no. 2 is connected as a star).

At this stage, ensure that the Neutral connection on the Power Supply is not connected to anything (i.e. floating star).

Set Primary Tap Changer to "NOM".

3)  Measurements / Observations

For each case, below, take a full set of measurements (see page 3)

Case 1: (Output Waveform "sine"   ;   Neutral wire NOT connected ; Tap NOM)

Case 2: (Output Waveform "sine"   ;   Neutral wire connected  ; Tap NOM)

Case 3: (Output Waveform "sine +3rd" ; Neutral wire NOT connected ; Tap NOM)

Case 4: (Output Waveform "sine +3rd"   ;   Neutral wire connected  ; Tap NOM)

3.2 Extended Star-Star Connection

 

Fig. 2   Extended Star-Star Connection

1)  Connect the three-phase transformer as shown in Fig. 2.

Set Primary Tap Changer to +5%.

The primary winding and secondary winding no. 1 are connected in series, to make an extended star. This connects secondary no.1 in antiphase in series with the

primary. The primary voltage will now be considerably higher than design normal and operates the transformer primary under overvoltage conditions. This

connection setup would never be used in a real system; here we are using it to

significantly increase the primary voltage beyond what the power supply is capable of to the point of seriously over–exciting the transformer. Secondary no. 2 is

connected as a star and used for measurements.

DO NOT leave the power supply and the transformer operating (i.e. "Output" set to "On")  for more than a few seconds at a time when operating with this

setup. The power supply is heavily loaded and will easily overheat. Use the

trace storage facility on the oscilloscopes to ensure that the transformer is not being driven in this way for more than a short time.

2) Measurements / Observations

Case 1: (Output Waveform "sine"  ;  Neutral wire NOT connected  ;  Tap +5%)

(a) Take a full set of measurements (see page 3).

(b) Observe the Primary Line Current “IR” waveform. while changing the Primary Tap Changer from +5% to NOM and -5%. Note any effect on

harmonics and losses.

Case 2: (Output Waveform "sine"  ;  Neutral wire connected  ;  Tap +5%)

(a) Take a full set of measurements (see page 3).

(b) Observe the Primary Line Current IR”, and Neutral Output Current”

waveforms while changing the Primary Tap Changer from +5% to NOM and

-5%. Note any effect on harmonics and losses.

Case 3: (Output Waveform "sine+3rd" ;  Neutral wire NOT connected  ;  Tap +5%)

(a) Take a full set of measurements (see page 3).

(b) Observe the Primary Line Current “IR”, waveform. while changing the Primary Tap Changer from +5% to NOM and -5%. Note any effect on

harmonics and losses.

Case 4: (Output Waveform "sine +3rd"   ;   Neutral wire connected  ;  Tap +5%)

(a) Take a full set of measurements (see page 3).

(b) Do NOT change the Primary Tap Changer to the other two positions

because you will probably overload the power supply. What do you think would happen to the transformer under test if the Primary Tap Changer was set to the  other two positions?

3.3 Extended Star-Delta Connection

 

Fig. 3   Extended Star-Delta Connection

1) Connect the three-phase transformer as shown in Fig. 3.

Set Primary Tap Changer to +5%.

The primary winding and secondary winding no. 1 are connected in seriesextended star. The secondary winding no. 2 is connected as a delta. Secondary no. 2 is used for measurements.

As before, DO NOT leave the power supply and the transformer operating (i.e.

"Output" set to "On")  for more than a few seconds at a time.

2) Repeat Section 3.2.2.

4. Calculations

Calculate the line-to-line voltage ratio for each of the three transformer connections.

5. Conclusions

Discuss the presence or absence of harmonic components in the waveforms.

Discuss the advantages and disadvantages ofthe various transformer connections.

What connection method has the lowest no-load losses? What effect does the primary neutral connection have on losses?

Standard practice in the UK for connecting distribution transformers is to use a delta

connected primary and a star connected secondary. What are the advantages and

disadvantages for this connection method if the connected load draws a non-sinusoidal current? (Consider triplen and non-triplen harmonics and losses).

 



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图