代做The Long Transmission Line代做留学生SQL语言

Electronics and Electrical Engineering

Power Systems / Electrical Energy Systems Laboratory

The Long Transmission Line

1.   Introduction

Power transmission lines run for up to 1500 km in certain parts of the world where hydro-electric power stations are located far from city load centres. Lines longer

than about 200 km need special “compensating” equipment to control the voltage  along the line, and to ensure the stability of the power transmission. This is because the voltage along an uncompensated line deviates from the ideal “flat voltage

profile”, depending on the load and the length of the line.

2.  Objectives

a.   To demonstrate the  Ferranti effect-voltage rise along a lightly-loaded transmission line;

b.   To demonstrate the flat voltage profile and linear phase-shift along a long transmission line loaded at its natural load or surge -impedance load” (SIL); and

c.   To demonstrate the effect of line length.

3.  Theory

A transmission line can be represented approximately by a ladder network of LC

branches as shown in Fig. 1. The inductance and capacitance are  distributed along the line, but a ladder network with a large number of lumped elements can provide a fairly accurate model of the actual line. Note that the  resistance of the cable is

considered negligible: the electrical properties are dominated by the series inductance and shunt capacitance.

 

Fig. 1  Lumped-parameter model of long transmission line

The electrical properties of the line are dominated by two important parameters: the surge impedance and the electrical length.

Surge impedance

The surge impedance Z0 is given by   Z                                                   (1)

where Lis the total line inductance [H] and Cis the total line capacitance [F] (of course, in this case you could use ‘per-unit-length’ or ‘per-section’ values, due to cancellation in the formula). Even though Land Care basically reactive elements, Z0 is a real number: in other words, it has the properties of resistance.

Electrical length

The actual length of a transmission line is measured in km, but the  electrical length θ is measured in radians and is given by

                                                           (2)

Note that here you must use the Land C values for the whole line.   ω = 2πf is the radian frequency of the voltage and current (normally f = 50 or 60 Hz). A line for which  θ = 2π  is said to have a length of one  wavelength at the operating

frequency f, but such lines are impractical and θ rarely exceeds π/6 or 30° .

Key properties

When the receiving-end of a long line is open-circuited, the voltage profile along the line is given by

 

where x is the distance from the sending end, a is the actual line length, and VS  is the phasor voltage at the sending end. The voltage at the receiving end is given by setting x = a: thus

 

This equation shows one problem with long lines: the receiving end voltage Vr

exceeds the sending-end voltage VS  by the factor 1/cos θ. For example if θ = 30°,  Vr  = VS  / cos(30°) = 1.155 VS   an excess voltage of 15% over the nominal or rated value. This is too far outside the acceptable range of voltage.

A line terminated in Z0 has a flat voltage profile, i.e. V (x) = VS  = Vr . The power

corresponding to this load impedance is the surge impedance load (SIL) or natural load. If the load is greater than SIL, the voltage profile tends to sag. If it is less, the voltage profile tends to rise. [At SIL the reactive power requirements at the ends of the line are zero. Below SIL, the line generates excess reactive power at both ends, but above SIL, it absorbs reactive power at both ends.]

4.   Experiments

The model transmission line has ten LC sections. In each section L = 7.29 mH and C = 0.020 µF. If the line is operated at 700 Hz,   ω = 2π × 700 = 4398 rad s .

a.   Use eqn. (1) to calculate the surge impedance Z0 in ohms.

b.  Use eqn. (2) to calculate the electrical length θ in degrees and

radians. (Remember that Land Care for the whole line, not just one section).

Connect the model transmission line as shown in Fig. 2. Ensure that the function generator is producing a sine wave, and that the 50 Ω output is the one connected. Keep channel 1 of the oscilloscope connected to the sending-end voltage, and use channel 2 as a roving connection. The DVM / Multimeter can also be connected   anywhere along the line.

 

Fig. 2   Connection of model transmission line. The ground wires to the oscilloscope

and the DVM are not shown in full.

c.   Open-circuit test

Set the frequency to 700 Hz.4 Set the output voltage to about 10 V pk-pk. Set both oscilloscope channels to 2 V/division. Set the DVM to AC volts, 20 V range. The

DVM measures the RMS voltage, i.e.   Vpp /2 × 1/ = 3.5 V approximately.

Using the DVM, measure the voltage Vat each of the 10 points along the line and calculate the ratio VVS for each point. Plot a graph showing the variation of

per-unitvoltage v = VVS along the line, i.e. v(x). Determine the ratio VVS and verify that it agrees with eqn. (4).

Use the oscilloscope to measure the phase angle of the voltage relative to VS  at the mid-point and at the receiving end. Use these phase angles together with the

corresponding voltage values to draw a phasor diagram showing the relationship between VS, Vr  and the mid-point voltage Vm

d.   Surge-impedance load test

Connect a resistive load equal to the surge impedance load Z0 calculated at (a)

above. Re-adjust the sending end voltage so that it has the same value as in

experiment (c), or if you can't reach that voltage, as near to it as possible. Repeat all the measurements of test (c), including the phase angles ofthe voltages at the

mid-point and the receiving end, relative to the sending end. Verify that the

voltage profile is flat, and try to explain any deviations from true flatness. Compare the phase angle between VS  and Vr  with the electrical length of the line, and

comment on the result. Also comment on the phase angle between VS  and Vm  and the phase angle between Vr  and Vm

e.   Line loaded above the surge-impedance load

Connect a resistive load of resistance equal to half the surge impedance load Z0

calculated in (a) above. Re-adjust the sending-end voltage so that it has the same

value as in experiment (c), or if you can't reach that voltage, as near to it as possible. Repeat all the measurements of test (c), including the phase angles ofthe voltages at the mid-point and the receiving end, relative to the sending end. Comment on the voltage profile and the new values of the phase angles between VS  and Vr, between VS  and Vm  and between Vr  and Vm . How would you restore the receiving end

voltage Vr to be equal to VS  without changing the real power transmitted to the load?4

f.    Open-circuit test on double-length line

The line length can be doubled by connecting two model transmission lines in

series. Alternatively, according to eqn. (2), we can simulate the same effect by

doubling the frequency to 1.4 kHz. Do this, and repeat experiment (c). Comment on the differences between the single-length line and the double length line. How

would you restore the receiving end voltage Vr  to be equal to VS?

 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图