代写ELEC3207/ELEC6256: Nanoelectronic Devices 2025代做Java语言

ELEC3207/ELEC6256: Nanoelectronic Devices

ELEC3207 and ELEC6256 Coursework

MOSFET Simulation Exercise

2025

Computer aided design plays a crucial role in the multi-billion-pound semiconductor industry. At the device engineering stage Technology Computer Aided Design (TCAD) is prevalent. It helps engineers optimize process flows and device characteristics prior to fabrication. TCAD can predict the electrical, optical, thermal and mechanical properties under set operating conditions given the data is properly calibrated. TCAD is purely physics based - using fundamental physical models such as drift-diffusion and Poisson equations to simulate the behaviour of devices.

For this coursework assignment, you will use the Silvaco TCAD package hosted on Iridis5, one of the University of Southampton s powerful high-performance computing facilities, to investigate metal oxide semiconductor field effect transistors (MOSFETs). You will be set a series of tasks that involve running simulations in TCAD to extract information about the structure and performance of these devices. You will write and submit a report on your work for assessment, which will contribute 30% of the marks for ELEC3207/ELEC6256.

Submit your report via handin.ecs.soton.ac.uk by 4 pm on Wednesday 3rd December 2025.

Aims and learning outcomes

This coursework exercise aims to give you experience in simulating MOSFET devices with a commonly-employed and well-established implementation of technology computer-aided design (TCAD). This  will allow you to deepen your understanding of the operation principles of MOSFETS as well as giving  you experience in using a set of industry standard simulation tools.

Having successfully completed this coursework assignment, you will be able to:

• Understand the operation principles of CMOS transistors

• Describe the differences between simple analytical models of devices and rigorous numerical  simulations

• Simulate the performance of CMOS transistors using Silvaco TCAD

• Vary process parameters to control device characteristics

Outline

Numerous commercial TCAD packages are available including Synopsys, Silvaco, Crosslight and  Cogenda. One of the leading implementations of TCAD used throughout the world is Silvaco TCAD. The package consists of several tools: a graphical user interface (GUI) called Deckbuild, a process  simulator called Athena, a device simulator called Atlas and finally a plotting tool called TonyPlot.

Athena models the various fabrication steps involved in semiconductor processing such as material  deposition, diffusion and etching, using various meshing strategies to generate a mixed grid element  mesh. This is advantageous as 2D structures can be formed from material growth and etching rather  than explicit geometry definition. This allows a means of forming complex 2D structures through  lithography steps followed by impurity diffusion as a function of time and temperature - key  processing steps that are common to device fabrication.

Atlas simulates the electrical behaviour in a semiconductor device that is represented as a mesh grid  file. Differential equations describing the electric potential and carrier distributions are applied to  each element of the mesh, with boundary conditions (i.e. potentials) provided at each electrode. The  equations are then solved to find the potential and carrier concentrations in each element. The  software uses a numerical solver which iterates repeatedly until a solution converges to a given  accuracy.

You will use example files supplied by Silvaco for modelling an n-type MOSFET with a polysilicon  gate. You should first become familiar with the operation of the simulation before tackling a series  of tasks that require you to make modifications to the scripts and carry out further analysis on the  results. Note that for Part II, the tasks you should complete depend on which version of the module  you are taking (ELEC3207 or ELEC6256). As such, please ensure you do the version of Part II for the  module you are taking.

Getting Started

Before starting the coursework simulation tasks, please work through the “Silvaco TCAD: Getting Started” document provided on the module notes page.

Simulation Tasks

Once you have familiarized yourself with the operation of Silvaco TCAD, you will be ready to tackle the following tasks. Please also refer to the helpful hints given later in this document.

IMPORTANT:

Try to limit yourself to a maximum of 2 TonyPlot windows and 1 DeckBuild window open at any one time to ensure that we do not use up all the available licences!

Part I MOSFET Data Extraction

***For all students***

(a)  Run the MOSFET example given by Silvaco (mos1ex01.in) to extract from the I-V curves the following parameters:

i.       on current (Ion) (when Vg=3 V)

ii.       off current (Ioff)

iii.       threshold voltage (Vth)

iv.       sub-threshold swing (S)

(b)  Extract the following physical device parameters:

i.       gate oxide thickness

ii.       body doping

iii.       gate material

iv.       gate doping

v.       gate length

The width in this two-dimensional simulation is 1 μm.  Extraction can be performed using simulation commands or by reading values from graphs in TonyPlot.

(c)   Re-run the simulation with drain voltage at 3V (see helpful hint 1 on how to do this) and extract the on current (when Vg=3 V).

(d)  Use theoretical (analytical) MOSFET formulae, together with the extracted physical device parameters and an appropriate value of mobility, to calculate the following I-V parameters:

i.        Ion, Ioff, Vth  and S at a drain voltage (Vd) of 0.1 V

ii.        Ion for Vd  = 3 V

(e)  Compare the values calculated from MOSFET formulae with the I-V parameters extracted from the simulation, explaining any differences you observe.

Part II for ELEC3207 students     Mobility and Velocity Saturation

***Only for students taking ELEC3207***

(a)  Continuing with the mos1ex01.in example script, alter the script. to replace the process

simulation (Athena) with its structure file so that you do not have to re-run that part of the simulation over and over again (see helpful hint 2). Add the following statement in the device simulation (Atlas) section, immediately below the models cvt srh print statement:

mobility mumaxn.cvt=1500

This makes the low field electron mobility of the Si explicit (and sets it to 1500 cm2/Vs).

Change the low field electron mobility and re-run the simulation to obtain the Id-Vg  output  characteristics.  Do this for a range of mobility values at a drain voltage of 0.1 V and plot the on current (when Vg=3 V) versus the low field electron mobility (in Excel or equivalent).

Record a sufficient range and number of mobility points to create a useful graph.

(b)  Repeat for a drain voltage of 3 V.

(c)   Discuss how the concept of velocity saturation in MOSFETs can explain the trends observed in your graphs, commenting on:

i.       why on current initially increases linearly with mobility but then saturates at higher mobilities.

ii.       why this saturation occurs at lower mobilities for the higher drain voltage.

Part II for ELEC6256 students     Electronic Band Structure and Flat Band Conditions

***Only for students taking ELEC6256***

(a)  Continuing with the mos1ex01.in example script, alter the script. to replace the process

simulation (Athena) with its structure file so that you do not have to re-run that part of the simulation over and over again (see helpful hint 2). Then follow helpful hint 3 to alter the script. so that conduction and valence band potentials are saved to the structure file and the structure file is plotted under zero bias conditions. Run the script, then use cutline to plot the conduction band, valence band and Fermi level (Electron QFL) from the gate, through the gate oxide and into the silicon substrate. Explain why:

i.       band bending is present in the silicon substrate, even with no voltage applied to the gate.

ii.       the simulation does not show the band structure for silicon in the polysilicon gate region.

(b)  Ramp the gate voltage to find the voltage required to achieve flat bands. Plot the resulting electronic band structure.

(c)  Vary the work function of the gate (see helpful hint 4), then ramp the gate voltage to

determine the voltage required to achieve flat bands at each work function value. Plot the flat band voltage against the gate work function (in Excel or equivalent) and explain the trend observed and the significance of the x axis intercept value.

Part III MOSFET Scaling

***For all students***

Take the example file mos1ex15.in as a starting point, and scale the gate length by changing the “cd” parameter in the Athena part of the code (see helpful hint 5). At what gate length does the source to drain leakage become too high? Change other process parameters, such as oxide thickness, doping concentration of the body, source and drain etc. such that the transistor parameters improve. Take the scaling parameters described in the ITRS Roadmap from the mid 2000s as starting point (see lecture notes). This part of the assignment is designed to be more open ended and to allow you to use your newly-acquired Silvaco TCAD simulation skills to tackle a real-world problem.

Report

The results of your work on the simulation tasks should be presented in a report and submitted as a PDF file via handin.ecs.soton.ac.uk by 4 pm on Wednesday 3rd December 2025.

The report should be structured as follows and should not exceed 12 pages including figures, references and appendices.

Part I

(a)  Electrical parameter extraction (methods and results)

(b)  Physical device parameter extraction (methods and results)

(c)  On current with drain voltage at 3V (method and result)

(d)  Theoretical MOSFET parameters (methods and results)

(e)  Comparison between calculated and extracted electrical parameters

Part II ELEC3207 only

(a)  Plot of Ion vs. low field electron mobility for Vd= 0.1 V

(b)  Plot of Ion vs. low field electron mobility for Vd= 3 V

(c)   Discussion/explanation of results

Part II ELEC6256 only

(a)  Plot of electronic band structure and explanation

(b)  Plot electronic band structure in flat band conditions and give the value of VFB.

(c)   Plot VFB vs. gate workfunction and explain x intercept value.

Part III

(method, results and discussion from device scaling investigation)

A template is available on the module’s Blackboard site.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图