代写STA 141A — Fundamentals of Statistical Data Science代写Web开发

STA 141A Final Project

In this final project, you will be required to learm and apply a key machine learning algorithm-the ridge regression model, which generalizes the ordinary linear regression model by introducing a regularization term.

Reading

● The conceptual partis in 6.2.1 Ridge Regression from the book An Introduction to Statistical Learning.

● The coding session is in 6.5. 2 Ridge Regression and the lasso from the same book

Instructions

● Clean the given data set.

● Plot the standardized ridge regression coefficients against the hyperparameter λ. (refer to Figure 6. 4 (left) in the ISL book.)

■ Note that standardized means that you need to standardize the covariates.

● Answer the following discussion questions.

Grading (20 pts total)

● Data clearning: 5 points (2 4 issues)

● Modeling: 5 points (Ridge Regression and Linear Regression)

● Plotting: 5 points (Visualizations must be correct, clearly labeled, aesthetically clean)

● Discussion: 5 points

● Readability (deduction)

■ Code should be well-commented and clear.

■ Up to 2 points deduction for poor readability (e.g., unexplained code, no comments, hard to follow).

In [ ]:

import pandas as pd

import numpy as np

import matplotlib.pyplot as plt

# Import any packages you want to use below

Data Cleaning

Clean the given dataset first.

● indicate the potential problems (hint: >=4 issues)

● apply reasonable method to address these problems

In [ ]: # add more cells when needed

Plotting

Make the plots below

In [ ]: add more cells when needed

Discussion

1. What's the connection between the linear regression model and the ridge regression model? (hint: think about the additional term in ridge regression)

2. How to understand the parameter λ? (Hint: think how the model changes when the value of λ changes)

3. Why are we interested in the standardized coefficient? (Hint: think about what happens when it is not standardized)

4. Interpret your coefficient for x6 when λ=0. Is it the same as the linear regression coefficient (you need to run a linear regression model. with the same data and compare them)? Explain why.

In [ ]:

#run your linear regression model here

#add more cells when needed



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图