代写DASE7140 Final Project Mysterious Time Series代做Python语言

DASE7140 Final Project

Mysterious Time Series

1 Description

A customer offered us a few samples of their measurements, whose background of appli-cation was kept a secret from us. The training dataset consisted of 90 files with a file name format XXXXX-Y.csv where XXXXX is a randomly generated string with no actual meaning, and Y (0 or 1) is the label of the corresponding data. As we can infer from the labels, this is a binary classification task. Opening each file, we see a floating point number series with a length of 8,192.

The customer also told us how they classified the data. They calculated the spectral density of the time series of 8,192 points, observed the spectrum, and then assigned a label to the data. However, the criteria of the observation were not unveiled. Whether to utilize the information depends on you.

The test dataset has a similar format with 110 files. The only difference is that the filenames include no label.

2 Your tasks

T1| You are required to design three different models (either neural networks or traditional machine learning algorithms) to solve the classification problem. You need to provide three training Python scripts (train1.py, train2.py, and train3.py) to save the mod-els respectively, and three inference Python scripts (inference1.py, inference2.py, and inference3.py) to load the corresponding models and save the predicted results as plain TXT files results1.txt, results2.txt, and results3.txt for the test dataset.

Note that, each line of results?.txt should be the corresponding label for a data file in the following order. In case some students overlook the sorted order, the output should be in two columns, the first is the filenames without extension, the second is the classification results, and in-between is a white space.

>>> sorted ( os . listdir () )

[ ’00 D9c . csv ’ , ’06 ade . csv ’ , ’06 d3E . csv ’ , ’0 F13B . csv ’ , ’0 F5F3 . csv ’ ,

’11 A9E . csv ’ , ’13 FA2 . csv ’ , ’1 B5bF . csv ’ , ’1 BA7e . csv ’ , ’1 D24d . csv ’ ,

’1 Da11 . csv ’ , ’1 bD0D . csv ’ , ’21 A6f . csv ’ , ’23394. csv ’ , ’260 BF . csv ’ ,

’26 ACa . csv ’ , ’29 a4d . csv ’ , ’2 B4ba . csv ’ , ’2 DBE6 . csv ’ , ’3 AF85 . csv ’ ,

’3 ab7A . csv ’ , ’44 Bc3 . csv ’ , ’44 eb7 . csv ’ , ’49 e5c . csv ’ , ’4 BaB7 . csv ’ ,

’4 CaF0 . csv ’ , ’4 db91 . csv ’ , ’53 a5E . csv ’ , ’57 b9D . csv ’ , ’57 d5D . csv ’ ,

’5 D8f3 . csv ’ , ’5 EE36 . csv ’ , ’5 ab7f . csv ’ , ’5 fa18 . csv ’ , ’63 EbE . csv ’ ,

’64 aaa . csv ’ , ’67130. csv ’ , ’67 CfD . csv ’ , ’6 Cb39 . csv ’ , ’6 cb19 . csv ’ ,

’81 afa . csv ’ , ’87484. csv ’ , ’8 E0ce . csv ’ , ’921 ba . csv ’ , ’9533 a . csv ’ ,

’99 a8A . csv ’ , ’9 E7ef . csv ’ , ’ A8cdd . csv ’ , ’ AeABd . csv ’ , ’ B194b . csv ’ ,

’ B1dDf . csv ’ , ’ B8601 . csv ’ , ’ B8eCc . csv ’ , ’ B9D78 . csv ’ , ’ B9c0b . csv ’ ,

’ BDbd5 . csv ’ , ’ BEfAe . csv ’ , ’ BccDB . csv ’ , ’ Bea5e . csv ’ , ’ BfCB5 . csv ’ ,

’ C4923 . csv ’ , ’ C4DBC . csv ’ , ’ C6F13 . csv ’ , ’ CA6D5 . csv ’ , ’ CbC5e . csv ’ ,

’ D4f14 . csv ’ , ’ D9eA6 . csv ’ , ’ De21A . csv ’ , ’ De504 . csv ’ , ’ E24D8 . csv ’ ,

’ EC270 . csv ’ , ’ ED28a . csv ’ , ’ EaA2d . csv ’ , ’ EcBAa . csv ’ , ’ Ece1b . csv ’ ,

’ F3273 . csv ’ , ’ F454e . csv ’ , ’ F45d4 . csv ’ , ’ FCEfe . csv ’ , ’ FDa2a . csv ’ ,

’ FEABB . csv ’ , ’ Fd6E7 . csv ’ , ’ a2Ce0 . csv ’ , ’ a367b . csv ’ , ’ aAc90 . csv ’ ,

’ aDd28 . csv ’ , ’ ad07C . csv ’ , ’ b2C56 . csv ’ , ’ b73Ba . csv ’ , ’ bAE4b . csv ’ ,

’ bC2F6 . csv ’ , ’ bDCeb . csv ’ , ’ bF8BB . csv ’ , ’ bFDd4 . csv ’ , ’ bc9Ed . csv ’ ,

’ c631e . csv ’ , ’ c6C09 . csv ’ , ’ cbF72 . csv ’ , ’ d2bD9 . csv ’ , ’ d37ec . csv ’ ,

’ d5A4f . csv ’ , ’ d5d48 . csv ’ , ’ d652C . csv ’ , ’ dAf32 . csv ’ , ’ e8Cee . csv ’ ,

’ eBa3d . csv ’ , ’ eDBd8 . csv ’ , ’ f3E64 . csv ’ , ’ fD0C9 . csv ’ , ’ fa08e . csv ’]

For example, the first 10 lines of your results?.txt may look like

00 D9c 1

06 ade 0

06 d3E 0

0 F13B 0

0 F5F3 0

11 A9E 1

13 FA2 1

1 B5bF 0

1 BA7e 1

1 D24d 0

Note that the 0–1 series here is generated by np.random.randint(2, size=110), so it doesn’t serve as a hint about the task.

T2| You are required to write a report that contains

• Description of the three models;

• Comparison between the performances of the models;

• Analyses of the results.

Your deliverables should include

1. The training scripts: train1.py, train2.py, and train3.py;

2. The inference scripts: inference1.py, inference2.py, and inference3.py;

3. The inference results: results1.txt, results2.txt, and results3.txt

4. A report: report.pdf

3 Important hints

The teaching assistants will evaluate your submission as follows:

1. Whether all the codes are runnable.

2. The completeness of the report. Extra insights will gain bonus points.

3. The results results1.txt, results2.txt, and results3.txt will be evaluated, and the one with the highest accuracy will be used for ranking. The marking criteria for rankings may be modified according to the average performance of all the students’ submissions. To provide intuitive understanding, assuming the full mark for this part to be 12 points, here is an example:

• Top 20% will get 12 points.

• Top 20%–60% will get 8 points (If there’s a tie at the top 60% place, all students at this place get 8 points).

• For the remaining: ACC≥0.70, 4 points; 0.60≤ACC<0.70, 2 points; ACC<0.6, 0 points.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图