代做BENV0191: Computational Performance-based Design of a Modular Facade代做留学生SQL 程序

Coursework BENV0191:

Computational Performance-based Design of a Modular Facade

Overview

The main objective of this coursework is to give you practical experience in framing, exploring, and solving a design problem using computational design support methods involving 3D and parametric modelling along with building visual and thermal performance simulation.

Specifically, you are expected to investigate and optimise the performance of a modular facade for the South-West elevation of 22 Gordon Street building at UCL Bloomsbury Campus, and explore design trade-offs towards reaching at least two of the following performance objectives:

•    Minimising heating energy demand;

•    Minimising cooling energy demand;

•    Minimising overheating hours;

•    Maximising daylight provision;

Maximising visual comfort.

Rhino 3D and Grasshopper will be used as a parametric 3D modelling tool. A relatively good knowledge of these software tools is required for this coursework. Ladybug and Honeybee (LB and HB) plug-ins will be used within Grasshopper for energy and daylight simulations. Collibri, Wallacei or other plugins could be used for parametric simulations and optimisation, but this is not compulsory.

The coursework is composed of five sections:

1.   Defining the design problem and formulating your design intent

2.   Establishing the building’s baseline performance

3.   Development of a design concept

4.   Parametric iterative simulation of design variants

5.   Review of results and discussion

The learning outcome of the coursework is as follows:

•    Understanding computational performance-based design aims and strategies;

•    Understanding and communicating design synergies and trade-offs between energy efficiency, occupants’ comfort and daylighting design;

•    Setting up iterative, parametric, or optimization-based building performance simulations to inform. building design decisions;

•    Documentation and communication of building performance simulation and optimisation to support designing sustainable built environments.

Brief

Housing Bartlett School of Architecture, 22 Gordon Street (formerly known as Wates House) was redeveloped in 2016. The concrete frame. of the existing building was retained, and internal layouts were re-arranged. New facades were installed on all elevations. This coursework is based on 22 Gordon Street as a case study building, exploring alternative options for the Southwest façade onto Gower Street. This coursework focuses on a small part at the South-West end of the building, floors 2 to 6 only.

The South-West facade is partly shaded by the tall buildings across the road. However, the highest parts of the facade are not shaded. To enhance the design of this façade in terms of thermal and daylighting performance, a strategy for the apertures and shading elements is  to be developed and tested with the aid of parametric building performance simulations. To this end, your coursework must include the following five sections.

Section 1: Defining the problem and formulating your design intent

Depending on your interests and the MSc programme you are studying, you should focus on specific performance challenges of the building and formulate and communicate your design intent to address those. Your design intent should involve at least two of the following objectives:

-     Minimising heating energy demand;

-     Minimising cooling energy demand;

-     Minimising overheating hours;

-     Maximising thermal comfort;

-     Maximising daylight provision;

-     Maximising visual comfort.

Section 2: Establishing the building’s baseline performance

Before starting the iterative computational design process, it is very helpful to make a baseline model and establish a baseline performance for your building. To this end, you need an initial design and specific performance indicators relevant to your design intent and performance objectives.

The initial design is only a starting point in your design process before you optimise its parameters and allows you to make a baseline model. You must use the Rhino model of 22 Gordon Street offered with this coursework to make this baseline model.

The baseline model must be documented with its key relevant characteristics including the parameters that will stay fixed in your design process (fixed design parameters) and the parameters that will be subjected to iterative changes in the subsequent parametric studies (design variables). You will learn more about these two types of parameters in the next section.

You must also simulate the thermal and/or daylight performance of your baseline model and benefit from solar radiation computation and document your baseline performance using a  number of relevant performance indicators depending on your performance objectives.

Some possible performance indicators are:

-    Solar irradiation [kWh/m2] received by the vertical SW facade over the summer period.

-    Annual space heating demand per floor area [kWh/m2.a] for heating energy assessment

-    Annual space cooling demand per floor area [kWh/m2.a] for cooling energy assessment

-     Hours of Exceedance [Hours or Percentage] following CIBSE TM52 definition for overheating assessment

-    Spatial Daylight Autonomy (sDA) [%] for daylight provision assessment

-     Useful Daylight Autonomy Exceedance (UDI-x) [%] for visual discomfort assessment

-    Spatial Glare Autonomy (sGA) [%] for visual discomfort assessment

Where relevant, use of tables and charts and other forms of visualization to present the baseline performance is highly recommended. Furthermore, it is recommended that you benchmark the baseline performance against relevant standards (such as EN 17037 Method 2 for daylight provision, or CIBSE TM52 for hours of Exceedance).

Section 3: Development of a design concept

You must develop a façade concept with the aim of fulfilling the performance objectives formulated in Section 1. The design concept could respond to the varied access to daylight between floors, and varied levels of solar radiation received across the façade. It is also important that the facade has a consistent aesthetic over the whole elevation. Similar modules could be used over the whole façade (floors 2 to 6 only), but their number and dimensions may vary between floor, to map to the shading requirements.

You are welcome to develop your own concept. Alternatively, you may want to develop a version of the concept illustrated below (Figures 1 and 2). In this concept, each module consists of a frame, within which an opaque panel (left) and a translucent panel (right) are fitted. The frame. acts as an overhang and vertical shading fins. Its depth can be adjusted. The widths of the opaque and translucent panels can also be adjusted.

Unless you are very familiar with Grasshopper, it is recommended to develop a parametric model following the concept below or even a simpler design. In any case, you will need to justify your design proposal as to how it responds your performance objectives.

Furthermore, in preparation of your design concept for its iterative evolution and simulation in the next section, it is essential that you determine the relevant fixed parameters and variables of your performance-based computational design endeavour.

Fixed design parameters: As an example, if you aim to minimize the building heating and/or cooling demand, U-Value of the external wall is a relevant parameter because it affects heat transmission through the walls and thus the heating and cooling energy demand of the building. Similarly, if you want to study daylight provision of the facade, reflectance of the  inside face of the walls affects the distribution of light across your interior surfaces and is   therefore a relevant parameter. But you may decide to keep these parameters fixed during your study to focus on the design of window and shades. Nonetheless, you should document these relevant fixed parameters of the design; that is, the assumed U-Value for    the external walls (in case of a building energy simulation) and the assumed reflectance of   the walls (in case of a daylight simulation). This makes it possible to interpret your estimated performance indictors on the basis of clearly documents assumptions.

Design variables: There are the input parameters that you want to iteratively explore to assess their impact on your performance objectives and optimize their values. Examples of design variable that you may decide chose are window-to-wall ratio, thermal and optical properties of the windows, and depth of shading surfaces.

For design variables, you must:

-    Allow enough flexibility to ensure the facade layout can map to the shading and daylight requirements;

-     Define the range that each variable can take, focusing on appropriately minimising the number of possible solutions. It is recommended to use range of discrete values when appropriate. For example, for a horizonal shading surface, you may consider only three possible values of 0.1m, 0.5m, 0.9m to capture an almost non-existent shade (without setting it to 0, which may cause issues for your automated optimization), a moderately deep overhang, and a deep overhang.

-     Use a minimum number of geometric parameters to define the facade layout to control the number of possible solutions. You should make use of mathematical relationships to allow definition of a wide range of possible solutions with minimum number of geometric parameters.

Figure 1: Facade module

Figure 2: Example of facade modules differentiation over two floors

Section 4: Parametric iterative simulation of design variants

The façade design concept should be developed as a parametric model within Rhino and Grasshopper such that you can easily (be it in a manual or automated way) generate the design variants that you want to simulate.

For the parametric simulation of design variants, you have three options:

a)  An iterative process of manual simulation of limited number of design variants by assigning the selected values for the study variables in a one-at-a-time approach (for example, simulation of the building with three overhang depth mentioned above, while all other parameters remain fixed);

b)  Automated parametric simulation of all  combinations of your study variables, the results of which could be communicated in one or multiple parallel coordinates plots.

c)   Setting up an automated optimisation, whereby a specific algorithm selects and simulates specific combinations of your study variables with the aim of optimizing your objective function.

In either option, use Grasshopper and HB run the façade configurations with the aim of building  a  mapping  (and  potentially  graphical  relationship)  between  study  variables  and performance  indicators.  Use the  relationships developed to identify design solution(s) for fulfilling your performance objectives in a balanced manner.

The focus should be on:

-    Clear presentation of the method adopted to explore different solutions and clear presentation of the results;

-     Ensuring that the range of solutions explored cover a good enough optimum. This should be justified.

If you purse options b and c, try to limit the number of design variables and their values as much as possible, estimate the total running time and ensure that you will have sufficient  time to complete the runs and prepare results and conclusions.

You will not get additional points for using more advanced computational methods. The  marking will be primarily based on the rational approach taken to optimise the design, and how this approach is justified and presented.

Refer to Appendix A for guidance on how to set the model parameters.

Section 5: Review of results and discussion

After verifying the validity of your simulation results, document them in a concise and effective manner in your report and discuss your findings. What would be a balanced optimum solution? What would be the solution you recommend? Justify your choice. Also, discuss the value and limitations of using the chosen optimisation method.

Final report

The final report must include the five sections detailed above. The process and main results of the calculations should be presented concisely and effectively. Use of tables and charts to present results is highly recommended. Other types of diagrams may be used where appropriate. The report should also have a conclusion that draws the parts together, and a take a critical look on the merits and limitations of the approach adopted. References to any relevant papers, studies or reports that have been used in the discussions must be indicated at the end of the report.

In total the main body of the report word limit is 3,000 words, and including diagrams, charts, and tables should be no more than 20 PAGES excluding appendices. The report needs to be concise and only include information that is relevant. The detail of your calculations should go in appendix. Other supporting information can also go in appendix, but they should be supplementary, and the main report should be self-contained as the  appendix will not be marked.

The report must be submitted in PDF format. The document is to be uploaded to Moodle by the submission deadline specified below. The submission will be run through Turnitin to check for plagiarism. Also, please note that, regarding the use of AI tools, this coursework falls into Category 2. This means AI tools can be ONLY used in an assistive role.

Submission deadline: 9 Jan 2026, 11:00 AM UK time

Guidance on marking

As a guide to the way this coursework will be marked, note that you are likely to receive a B if you include all the sections as mentioned above, using the different tools appropriately. If you have developed and implemented a coherent and well-defined approach, along with a thoughtful understanding of the problem, the process and the results, then you are likely to   get an A. If you miss out some of the above sections, if you show poor understanding of the process or its application, you will have marks deducted. Also, as you can see in the marking scheme below, a well-structured report that links the sections well, will be marked higher than a less structured one.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图