代做ELEC6255 IoT Networks调试R程序

ELEC6255 IoT Networks

Coursework 2025/26

Assignment Set:                 Thursday 09th October 2025, during lecture

Assignment Type:               Individual coursework

Submission Deadline(s):   Fri 12th December 2025, by 4pm (written report)

Feedback:                           We aim to return your mark and written feedback by Friday 16th

January  2026,  though  will try to  get  this  to  you  before  the examination.

Mark Contribution:            This assignment is worth 40% of your mark for ELEC6255

Required Effort:                  You should expect to spend up to 60 hours on this coursework

Examiners:                          Professor Geoff Merrett and Dr Alex Weddell

Learning Outcomes

Having successfully completed this coursework, you will be able to:

•   demonstrate understanding of the principles of layered networking models, architectures and protocols which enable IoT networking

•   use simulation to test and evaluate networking algorithms, protocols and architectures

•   find, read and evaluate technical literature, and interpret standardisation documents

•   communicate your technical work

Task Summary

A billionaire property owner has contacted you to provide an IoT smart lighting system for one of their mansions. They want you to investigate and provide some assurances about the reliability, latency, and additional energy consumption of such a system. Your task, in this coursework, is to use OMNeT++ to simulate, evaluate and analyse the performance of such a smart lighting network, based loosely around the ‘Hue’ smart lighting system.

This coursework is solely assessed through your individual report, which must be submitted along with your source code. The report must document your investigation into this system, using network simulation as a tool. This is not a ‘lab’ exercise: we are not posing an exhaustive list of specific questions that we want you to answer, we want you to perform your own research and investigation of a system within the scope of the coursework brief, and this is reflected in the marking scheme.

Academic Conduct and Responsibility

Please ensure that you are aware of the University’s regulations on academic conduct and responsibility, particularly with regard to plagiarism (of written text or code) and collusion. This is an individual coursework and the report that you submit must be your own work. Any use of AI-based text- or code-generation tools, or collaboration with any other individual, must be clearly declared and is likely to result in a reduced mark. To avoid any potential issues with recycling, any student who is repeating the coursework should talk to the module leader (Professor Merrett) before starting it.

Full Task Description

Part 1: Model your Network

Your first task is to create an OMNeT++ network using the IEEE 802.15.4 PHY and DLL layers, and the AODV NET layer.

You can find the floor plan for the property that you are to model in Appendix 1 (listed by name), at the end of this document. You do NOT need to model this building perfectly, and can estimate the sizes and locations of rooms from the floor plan. You should arrange the following nodes throughout the property: 1 ‘hub’, 28 ‘smart light’, and 7 ‘light switch’ nodes. You can place them where you like, ensuring that you spread them out all around the property.

Each light switch controls all of the smart lights that are located in the same room as it. All packets sent from light switches get transmitted to the hub (possibly being routed via other light switches and/or smart lights). The hub uses a lookup table to identify the addresses of the smart lights that are located in the same room as the light switch, and then transmits packets to each of them (possibly being routed via other light switches and/or smart lights).

Your simulation should approximately (but realistically) represent the system that you are modelling. You should make appropriate and justifiable modelling decisions, including:

•    Consider your choice of parameters in the physical layer  (e.g. radio transmit power, sensitivity, data rates, frequency, bandwidth, etc). You could assume that the nodes will be based around the NXP JN516X radio module/system-on-chip. Consider your choice of an appropriate indoor wireless channel model, to model path loss and noise. Your chosen radio transmit power, channel model, hub location etc MUST ensure that multi-hop packet routing is required; it should not be possible for all nodes to be able to communicate directly (in a single-hop) with the hub. You may want to put your hub at one side of the network (not the centre) to help with this. Make sure you set sensible dimensions for your simulated floorplan, and locate devices in appropriate locations.

•    Consider how to model packet generation, and model/approximate the flow of data through the various types of node in the network. You can model light switch presses however you wish, in order to explore system operation. For example, do you think it is realistic that every light switch might be pressed once per second? Are they all pressed at the same time?

•    Consider how to model the energy properties  (e.g. the capacity of the energy stores, their initial values, and the radio power consumption in various receive/transmit/idle states) of the different devices. The light switches are battery powered, while the hub and smart lights are powered from mains. Your nodes should NOT harvest energy (i.e. you should not model any energy generation).

•    Consider how long your simulations should run for. You should simulate the network for  a  period  of  time  sufficient  to  explore  expected/typical  behaviour.  How  many simulation runs do you need in order to be able to draw general conclusions?

You are strongly encouraged to look at what you are required to write about in Section 1 of your  individual   report,  to  ensure  that  you  are  making  the  necessary  decisions  and appropriately recording your justification for them.

Part 2: Check your Model and Simulation Setup

To check that you have made appropriate modelling decisions, and setup the simulation correctly, you are encouraged to first check that the network performs as you would expect it to. Use OMNeT++ to simulate a small subset of the network; use a small number of devices and place them sufficiently close to the hub such that they can communicate directly over a single hop. Run some simulations, and confirm that it operates as you would expect (e.g. for latency, packets sent/received, energy).

Part 3. Analyse the Network Performance

Add all of the nodes back into the network (1 hub, 28 lights, 7 switches), located in appropriate places on your simulated floorplan. Your task is to analyse the performance of the full system you have modelled, in particular investigating the customer’s concerns, i.e. reliability, latency and energy consumption. This document does not provide a prescriptive or exhaustive set of questions for you to answer. However, you may wish to consider:

Reliability: How often might a switch be pressed, but the light not respond? Is this acceptable? If a node fails, does the rest ofthe network recover and operate correctly?

Latency: How long does it take for a light to turn on after pressing a switch? Is this an acceptable delay? What is the delay caused by; how might you improve it?

Energy Consumption: How much energy do the nodes consume? How large would a  switch’s battery  need to be to last  a year;  is  this  realistic?  Consider  the  energy consumption of switches and lights, but ignore the energy consumption of the hub.

Interpret your results; if the reliability/latency/power differs at different nodes in the network, what are the causes of this? How can you evidence this? Explore the routing table formed by the network. What does it look like, and does it change during simulation?  Do the results depend on the type of node, or its distance/number of hops from the hub? Consider the different  results  you  could  obtain/plot  to  explore  behaviour   –  for  example,  for  energy consumption you could obtain data for Remaining Energy vs Time, or you could obtain results for the Remaining Energy at the end of the simulation. What is most appropriate?

Think about suitable statistical methods to use to analyse and evaluate your results. It is unlikely that the average (mean) alone will ‘tell the whole story’, and you may wish to consider additional appropriate metrics   (e.g.  range,  variance,  standard  deviation,  interquartile range). Note that analysis is more than just presenting data/results and describing them. You should discuss why the behaviour is seen, and what is happening to cause this. You may need to do some reading of the technical literature and/or further experiments to answer this.

If you are struggling to get results, or to make sense of the results you have obtained, consider reducing the size of the network (substantially fewer switch and light nodes, potentially distributed over a smaller area). If and when you get interpretable results from this, scale your network back up to the full size (1 hub, 28 lights, 7 switches).

Deliverables and Marking Scheme

There is a single deliverable, marked out of 40, contributing 40% of the credit for this module.

Individual Report [total of 40 marks]

(due by 4pm on Friday 12th December 2025, online hand-in)

You should produce a written report documenting your investigation. The report must be single-spaced, single-column, use 12pt Times New Roman, and contain the following sections:

Section 1: Network Model [maximum of 1000 words]

You should include a screenshot showing the network topology, i.e. where various device types (light switches, smart lights and the hub) were spatially located. State and justify the physical dimensions of your floorplan (as defined in your .ned file).

For each modelling decision that you made (i.e. the models and parameters that you chose) in Part A of the coursework, you should then 1) state what you chose, 2) justify why this was an appropriate choice, and 3) refer to the line(s) in your simulation’s .ini file (which you will include in Appendix 1) where this was implemented. As a minimum, you should ensure that you state and justify all of the following:

Radio and wireless channel

o Radio transmit power, sensitivity, data rate, frequency, bandwidth

o Channel background noise, path loss model, and associated parameters

•    Power/energy

o Initial and nominal capacities of energy storage devices

o Power consumption models and parameters in various states

•    Packet flows

o How did you configure the devices to model packet flows through the network?

o Packet generation start times, send intervals, packet lengths etc

•    Simulation setup

o Simulation time/duration

o Number of simulation runs

Where appropriate, you should substantiate your modelling decisions using references to standards, datasheets, and the technical literature (e.g. conference and journal articles).

Section 2: Results and Analysis [maximum of 1500 words]

Present the results you obtained from simulating your full network in Part 3, and discuss the conclusions that you draw from them. Do not underestimate the importance of results (i.e. figures to show data/graphs/networks etc) 一 this is where you explore various aspects of your simulation, e.g. energy, latency, lost/received packets. Make sure that you provide results to evidence all of the conclusions that you make, and explain them in detail (i.e. don’t leave the reader(s) to draw their own conclusions from your results). Label all axes on graphs, and state  units  where  appropriate.  We  encourage  you  to  replot  data  obtained  from  your simulations (e.g. in Excel), rather than just pasting OMNeT++ screenshots in your report (as these can be difficult to read and omit important information).

Explore why the network performs as it does. For all of the results that you present, you should consider ‘Is this what I expect?’ and ‘Why is this the case?’. For example:

•    If only 50% of sent packets are received, why are some of them getting lost? If 100% of sent packets are received, what’s ensuring that none of them get lost? Do you have results  that  evidence  that  this  is  indeed  what  is  causing  this  behaviour?  Is  this supported by the technical literature?

•    If some nodes deplete their energy store more/faster than others, why is this? What influences how much energy they consume? Do you have further results that confirm that this is what is causing the behaviour? Is it supported by the technical literature?

Support your analysis and conclusions using the technical literature, where appropriate.

Appendix 1 - Word Count

Complete the following table, and include it in Appendix 1:

Section

Word Limit

My Word Count*

Section 1: Network Model

1000 words

Section 2: Results and Analysis

1500 words

* The Word Limit/Count excludes any figures or tables

Appendix 2 - Your .ini file

You  should  include  the  contents  of  your .ini (probably  named omnetpp.ini)  file  in  this appendix. Use a non-proportional/monospacedfont (e.g Courier) for readability, and add line numbers (many text editors can do this for you), so that you can refer to them in Section 1 of your report.

References

Include references to any sources you have used in your report; you must use the IEEE referencing  style.  You  are  expected  to  engage  with  technical  literature  to  justify  your modelling choices (for example technical papers on path loss models in indoor environments, datasheets on devices modelled, etc), and to understand and interpret your results.

Design Archive

Please also submit your code in a ‘design archive’: a zip file containing your project folder but NOT the results (as this will likely be very large). While the design archive is not marked, it is a compulsory submission and maybe looked at by the examiners if they have any concerns about academic responsibility and conduct. Late penalties will apply from the  time  that BOTH the report and design archive are submitted.

The marking criteria, and examples of corresponding descriptors (these are not exhaustive; academic judgement will extrapolate these to assess submissions), are shown below.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图