代写FIN 336 Data Analytics Project (Fall 2025)代写Processing

FIN 336 Data Analytics Project (Fall 2025)

Mortgage Interest Rate Determinants

The application of extremely large datasets in modern business is increasing in importance at an ever increasing rate, and real estate finance is no exception.  There are trillions of dollars of outstanding loans at any given point in time which affects, either directly or indirectly, everyone in the financial system.  Large datasets can help us understand key trends, risks, and how certain loan/borrower characteristics are related to one another. Ultimately, data analytics should help us make more informed decisions.

This assignment will provide you with hands-on experience in working with a portion of the large mortgage dataset available through Freddie Mac.  This extensive collection of data is comprised of two parts, mortgage originations and mortgage performance.  We will work with originations data, which includes roughly 53.6 million mortgages originated between January 1, 1999 and March 31, 2024.

To make this a workable project, I have randomly selected a much smaller sample of 75,750 observations.  This subsample includes 3,000 origination records per year for the 1999 – 2023 period, and 750 records from the first three months of 2024.  This is small enough to allow for analysis using Microsoft Excel, and large enough to give you the “big data” experience.

When performing a statistical analysis, it is good practice to spend some time looking at the data source.  To aid you in familiarizing yourself with the Freddie Mac data, I have posted a document on Course Site (Single-Family Loan-Level Dataset General User Guide) that explains the data file layout and matches variable numbers with variable names.  Note that I added a variable (oyear) to the Freddie Mac Data that indicates in which year the loan was originated.   Further, pay close attention to Freddie Mac’s arbitrary use of numbers such as “9”, “99”, “999”, or “9999” to represent data not being available for a particular field for a given observation.  If you don’t erase such numbers, your computations will be incorrect.  This is common practice with large datasets.

Deliverables:

You will need to turn in an analysis that includes the following five elements on or before December 3, 2025. This is to be your own work (e.g. no working with other past- or present-students.)

1)   Create a table of simple summary statistics showing the mean, median, standard deviation, minimum, maximum, and count†  for the following variables: Original Interest Rate (Rate)*, Original Unpaid Principal Balance (UPB), Original Loan Term (Term), Original Loan-to-Value (LTV)*, Original Debt-to-Income Ratio (DTI)*, Borrower Credit Score (FICO), Number of Borrowers (Borrowers)*, First Time Home Buyer (First)‡,**, and Prepayment Penalty (Penalty)‡,***.  [10 points]

2)   Create a table showing simple (i.e. unconditional) pairwise correlations between all variables from #1 above**. Pay attention to the direction and strength of the relations.   [10 points]

3)   Create a table showing simple averages for each of the following variables, by origination year: Original Interest Rate*, Loans used for a Home Purchase (Purchase)‡,**, Original Unpaid Principal Balance (UPB), Original Loan- to-Value (LTV)*, Original Debt-to-Income Ratio (DTI)*, Borrower Credit Score (FICO), Loans with Credit Score below 680 (< 680)‡, **, and Loans with a Single Borrower (Single)‡, **. Also, include a totals row with the overall averages. While some of these variables already exist, you will have to generate others using information available to you in the dataset. [20 points]

4)   Create a table that lists all the lenders who sold loans to Freddie Mac (Seller), sorted in descending order based on the number of loans.  The banks should be numbered (e.g., 1. XYZ Bank, 2. ABC MORTGAGE COMPANY, LLC, and so forth).  Include columns showing the frequency, percent of total, and cumulative percent for each lender as well.  There should be five columns ordered as follows: Number, Seller, Frequency, Percent**, Cumulative**.  Only group by identical lender names in your tabulations.  Resist the urge to combine highly similar names.  [20 points]

5)    Using only data from years 2013 – 2024, perform a regression analysis with the original interest rate as the dependent variable and the following explanatory variables: Original Unpaid Principal Balance (UPB), Original  Loan Term (Term), Original Loan-to-Value (LTV), Debt-to-Income Ratio (DTI), and Borrower Credit Score (FICO).

Also, include individual year indicator control variables for years 2014 – 2024 (i.e. for each year create a variable that is populated by a 1 if the observation was originated during that calendar year, and zero otherwise. The 2013 observations will serve as the base year, so we don’t include an indicator variable for it.)  For reference, the complete regression equation is presented below.  This is a fairly standard representation of a regression. Note that there are 11 separate year dummies, variables 6 – 16, that are shown in condensed form in the equation.  Present the regression results in a table.  Don’t alter the formatting, just use the default Excel output. [30 points]

Rate i= α + β1 UPBi + β2Term i + β3LTvi + β4DTIi + β5FIco i + β6一16year Dummies6一16,i + εi

Final Discussion:

Discuss the analysis in depth.  To help you get started, consider the following questions: What are the numbers telling you?  Are there trends, magnitudes, or relations that stand out?  Are the coefficient signs in the regression table consistent with those observed in the simple correlation table?  What about the statistical significance?  Is there anything you did or did not expect?  Is there anything strange that you think would merit further empirical investigation and why?  Etc.  [10 points]

Grading:

Point allocations for the assignment are based on accuracy, professional presentation/neatness, and the quality of your comments in the discussion.  The assignment is worth 100 points; 80 for accuracy, 10 for a clean presentation, 10 for the quality of your comments.  A breakdown of the accuracy points for each individual table is shown in [brackets] in the instructions above.  I will deduct one point for each number that is incorrect, up to the maximum shown in [brackets] for a given table.

Resources:

As noted above, resource materials are available to you on Course Site.  They can be found under the heading “ Data Analytics Project.”  I have also posted a paper by University of Chicago law professor Alan O. Sykes, “An Introduction to Regression Analysis”, which provides helpful background on regression that is not overly technical.

You may need to install the Data Analysis TookPak in Excel if you haven’t already done so.

[Excel → File → Options → Add-Ins → Manage Add-Ins → Analysis Tool Pack → OK]

[Excel  → Tools → Excel Add-Ins → Analysis ToolPak]

Do not display any decimal places

*     Display one decimal place

**   Display two decimal places

*** Display three decimal places

Simply create an indicator (also sometimes called a “dummy”) variable that equals 1 if a specific condition is met, and 0 otherwise.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图