代写ELEC4632 Lab 5调试R程序

ELEC4632 Lab 5

Design and Real-time implementation of PI control system for set-point control

In this lab, you are going to design, simulate, and implement a discrete-time proportional-integral (PI) control system on an actual W-T system in real-time. The PI controller is from the proportional- integral-derivative (PID) controller category without its derivative part. Similar to the situation you faced in Lab 4, our identified model from Lab 4 may no longer be valid for your specific W-T setup since some valves positions may have been changed. Therefore, for the purpose of this lab, you must repeat system identification, as what you did in Lab 2 and Lab 4, to be able to design and simulate your PID control system and validate it by implementing your controller on the actual W-T system. However, in real world, having a valid model for PID control system design is not essential since the structure of PID controller only depends on the reference signal, yref, and the measured output, y.  In  our  case,  to  be  able  to  simulate  the  control  system  first   before  its  real-time implementation, we must have a working model of the W-T process. More details on PID controller structure in both continuous-time and its equivalent discrete-time are provided in the Appendix, which you are highly encouraged to read.

Note:

Pre-lab Exercise

a.   If the PI transfer function in continuous-time is given as GCT (s), in Eq.(1)on the left, show that its equivalent discrete-time form in Z-domain is obtained as GDT (z), Eq.(1)on the right, using Zero-Order-Hold (ZOH) method. Note that in Eq. (1), Kp is the proportional gain, Ki is the integral gain, and h is the sampling time. Write your answer in the provided box.

b.   Use inverse Z-transform. for GDT (z) in Eq.(1) to find the difference equation relating the input (error signal e(k) = yref (k) - y(k)) to the output (control input u(k)) of the discrete-time PI controller as shown in Fig. 1. Write your answer in the provided box.

c.   Using the  block diagram of given in Fig. 1, find the closed-loop transfer function Gcl(z) = Y(z)/Yref(z), and the transfer function from reference signal to control input, i.e., U(z)/Yref(z). Write your answer in the provided box.

Fig. 1. Block diagram of a feedback control system with PID controller.

Lab Exercise (2 marks)

Make sure that you have your lecture notes on the topic of “Digital Control  System Characteristics”, and previous lab notes and your personal notes with yourself. You can always access lecture and lab notes via Moodle as well. Now, follow the steps below for this lab exercise.

1. System Identification (0.5 marks, checked after 50 minutes)

a.   Repeat system identification on the W-T system as you did before in Lab 2. Show your results to the demonstrator to receive the mark for this part of the lab exercise by plotting the figures that you were asked before in Labs 1 and 2.

2. PI control design (0.5 marks, checked after 1 hour 30 minutes)

a.   Once a good model is obtained, use either MATLAB or Simulink to design and simulate a PI controller for your identified system (check the remarks below). You can assume initial conditions are zero. Use the same reference signal for the control system to  track as fast as possible without exceeding the control input limits, i.e., yref (k) = {0, 0.7, -0.2, 0.5, 0} with each level period to be 140×0.75 = 105sec. For a proper design, you need to find good values of PI controller gains Kpand Ki such that the overshoot remains less than 2 percent. Also, make sure your choice of PI controller gains results in control input remaining within its limits.

b.  There are several methods for selecting proper PI gains to achieve the desired control performance. The most trivial method is using the trial-and-error approach. We know that from many resources that increasing Kp reduces the rise time (increasing response speed) and adding Ki removes steady state error as well as slowing down the response while it increases overshoot. You can begin by choosing Kp = 0.5 and Kp = 0.01, run the simulation and examine the output following the reference signal and control input. To improve the control system performance, change Kp by 0.05 increments/decrements and Ki by 0.005 increments/decrements. Other famous empirical methods to find suitable Kpand Kp is the so- called Ziegler-Nichols Step-Response method and Ziegler-Nichols Ultimate- Sensitivity method, which is explained in Appendix. MATLAB and Simulink also provide automatic tuning for PID, particularly if you use built-in PID Controller block in Simulink.

Remarks:

-     Note that we are designing just a PI controller here. The reason for not using the full PID controller with derivative action is that the measurements are noisy and adding derivative of the error signal to the controller would aggravate the noise in the closed-loop system. Refer to Appendixfor more discussion on reducing the side effects of derivative action in PID controllers.

-    To design the PI control system in MATLAB, you can define the closed-loop transfer function Gcl(z) = Y(z)/Yref(z) (obtained in your prelab) and then use “lsim” function to simulate the control system. Note that you can only get the output when using lsim with Gcl.Therefore, you also need to use lsim a second time with the transfer function  from reference signal to control input U(z)/Yref(z) and the simulated output obtained to find the control input values separately. You may find the MATLAB functions “feedbackand “pid useful. You can also use other methods in MATLAB.

-    To design the PI control system  in Simulink, You can build the block diagram using transfer functions similar to Fig. 2. Another possible way is to build the system using state space representation (i.e. using G, H and C obtained from system identification) and using the built- in PID Controller block in Simulink.

3. Real-time implementation of the control system (1 marks, checked after 2 hours)

a.  When you are satisfied with simulation results, download the pre-built Simulink file named WaterTankSysControlPID.slx from Moodle. Set your model and controller parameter in the real-time model as shown in Fig. 3. The parameters are PI Controller block parameters Kp and Ki, and input and output offsets, u_offset and y_offset, respectively. You just need to assign them with their values in  MATLAB Workspace as Simulink can read them from there. Moreover, you should change the default values in Saturation TANK#1 block to Vmax and Vmin of your W-T setup.

b.  After making sure all the proper settings are in place, run the Simulink model. The running time is set to 5×140×0.75 = 525sec or 8 minutes and 45 seconds, and the program will stop after this time. The data will be recorded in MATLAB Workspace as PIDLogData in Structure   format,    and    it    is    saved    in    the    directory    “Documents/MATLAB”    as PIDControlData_0.mat. Similar to what was explained in Lab 2 for data recording, if you repeat the experiment, the new data will be save under the same name with an increment of one unit, so you would never lose any test data.

c.   Copy the auto-generated data files (found in Documents/MATLAB) for both system identification (i.e. all SysIdenData_x.mat) and control system implementation (i.e. all PIDControlData_x.mat) in addition to your codes and/or Simulink model  to your own computer. You will need these for the final report.

d.   Finally, extract the data as shown below and plot them against your simulated results similar toFig. 4.

treal = PIDLogData.time;

yref = PIDLogData.signals(1).values(:,1);

yreal = PIDLogData.signals(1).values(:,2);

ureal = PIDLogData.signals(2).values;

Fig. 3. Pre-built Simulink model for real-time output state feedback control with observer.

This figure  illustrates the  actual  PID  control  results  obtained from  one  of the W-T systems. It compares the real-time results with the simulated ones. The PI controller gains were chosen as Kp = 0.68 and Kp = 0.03 for this test with zero initial conditions. As you can see, the practical results are quite similar to the simulation ones for output signal in Fig.4(a) and control input  signal in Fig. 4(b). Both simulated output and control input signals are shifted up by output offset and input offset, respectively. This confirms that the identified model was accurate enough to represent the process andto be used for the controller design, as well as validity of the PI control system design.

Fig. 4. Comparison between simulated and actual PI control of W-T system in set-point tracking, (a) Output for different water levels, (b) Control input.

a. Optional as Bonus: Can you explain the behaviour of the real-time control operation in the first period (initial transient behavior) shown in Fig. 4? Why is the control input in Fig. 4(b) saturated at the beginning?



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图