代写ELEC4632 Lab 4代做留学生Matlab程序

ELEC4632 Lab 4

Real-time implementation of output feedback control system for set-point control

In this lab, you are going to implement your non-deadbeat output feedback control system you designed in Lab 3 on the actual W-T system in real-time to evaluate its performance. However, the characteristics of the same W-T setup may have slightly changed since the last time you used it. The valves positions of the W-T setup may also have been changed since then. As a result, your identified model from Lab 2 and your designed output state feedback controller from Lab 3 are no longer valid for the W-T setup you are working with in this lab. Thus, for the purpose of this lab, you must repeat system identification, as what you did in Lab 2, and modify your Lab 3 codes for set-point control part so that your modified output feedback control system is working properly in real-time on your specific W-T setup.

Lab Exercise (2 marks)

Make sure that you have your lecture notes on the topics of “Pole Placement Design” and “Digital Control System Characteristics”, and previous lab notes and your personal notes with yourself. You can always access lecture and lab notes via Moodle as well. Now, follow the steps below for this lab exercise.

1. System Identification (0.5 marks, checked after 50 minutes)

a.   Repeat system identification on the W-T system as you did before in Lab 2. It is always important to have a valid model for the process that you are working with at each stage of practical control system design and implementation. Show your results to the demonstrator to receive the mark for this part of lab exercise by plotting the figures that you were asked before in Labs 1 and 2.

2. Output feedback control design (0.5 marks, checked after 1 hour 20 minutes)

a.   Once a good model is obtained, design an output feedback control system  using your codes from Lab 3. You just need your results from Set-point control and output feedback control parts. You can assume initial conditions are zero. Use the same reference signal as in Lab 3 for the control system to track as fast as possible without exceeding the control input  limits,  i.e., yref(k) = {0, 0.7, -0.2, 0.5, 0} with each  level period to  be  140×0.75  = 105sec.  Make  sure  your  choice  of  closed-loop   eigenvalues  results  in  control  input remaining within its limits.

3. Real-time implementation of the control system (1 marks, checked after 2 hours and 20 minutes)

a.  When you are satisfied with simulation results, download the pre-built Simulink file named WaterTankSysControl.slx from   Moodle.   Set   your   model   and   controller parameter  in  the  real-time  model  as  shown  in Fig.  1.  The  parameters  are  model matrices G, H, C; state feedback gain L; observer gain K; inverse of close-loop DC gain Gcl-1(1)  named  as Gcl_ 1,  and  input and output offsets, u_offset and y_offset, respectively. You just need to assign them with their values in MATLAB Workspace as Simulink can read them from there. Moreover, you should change the default values in Saturation TANK#1 block to Vmax  and Vmin  of your W-T setup. Make sure to use state- space matrices G, H, C and D of the canonical observable form in the observer block. In the Simulink model you will have variables G_obs, H_obs, C_obs and D_obs  inside the Observer  block. The values of the variables are G_obs=GT, H_obs=CT, C_obs=HT, and D_obs=DT.

Fig. 1. Pre-built Simulink model for real-time output state feedback control with observer.

b.  After making sure all the proper setting are in place, run the Simulink file. The running time is set to 5×140×0.75 = 525sec or 8 minutes and 45 seconds, and the program will stop after this time. The data will be recorded in MATLAB Workspace as SFLogData in Structure   format,    and    it    is    saved    on    current    directory    of    MATLAB    as SFControlData_0.mat.  Similar  to  the  what  was  explained   in   Lab  2  for  data recording, if you repeat the experiment, the new data will be saved under the same name with an increment of one unit, so you would never lose any test data.

Fig. 2 Actual output feedback control of W-T system result in Simulink

c.   Finally, extract the data as shown below and plot them against your simulated results similar to Fig. 3.

treal = SFLogData.time;

yref = SFLogData.signals(1).values(:,1);

yreal = SFLogData.signals(1).values(:,2);

ureal = SFLogData.signals(2).values;

This figure shows the actual output feedback control results obtained from one of the W-T      systems      for       which       the       modelling      data       was       given       in SysIdenData_StudentVersion.mat (the  example  data  that  has  been  used throughout Lab 1 and Lab3). It compares the real-time results with the simulated ones. The closed-loop eigenvalues were chosen as [0.9 0.9] for this test with zero initial conditions. As you can see, the practical results are quite similar to the simulation ones for output signal in Fig. 3(a) and control input signal in Fig. 3(b). Both simulation output and control input signals are shifted up by output offset and input offset, respectively. This confirms that the identified model was accurate enough to represent the process and to be used for the controller design, as well as validity of the output feedback control design, particularly from the similarity in the pattern of both the control input signals and their final values at each period inFig. 3(b).

Fig. 3. Comparison between simulated and actual output feedback control of W-T system in set-point tracking, (a) Output for different water levels, (b) Control input.

Optional as Bonus: Can you explain the behaviour of the real-time control operation in the first period (initial transient behavior) shown in Fig. 3? Why is control input in Fig. 2(b) saturated at the beginning?




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图