代写ELEC 6910G Amphibious Robot for Wetland Environmental Inspection代写C/C++语言

- ELEC 6910G -

Group Project: Amphibious Robot for Wetland Environmental Inspection

Project Overview:

Wetlands are unique ecosystems characterized by saturated soils, standing water, and dense vegetation, often serving as transitional zones between terrestrial and aquatic environments. They are rich in biodiversity and play crucial roles in water filtration, flood control, and car- bon storage. However, their soft, waterlogged terrain, combined with fluctuating water levels, makes traversal challenging.  The objective is to design and prototype an amphibious robot capable of operating in both terrestrial and aquatic environments for the purpose of Wetland Environmental Inspection.  Students will demonstrate principles of robotics, mechatronics, and engineering design by considering the inherent challenges under a specific operational set- ting for their robot design.

Task Specification:

To guide the design of your amphibious robot, we present a clearly defined task that your robot will address. Your robot design will be evaluated based upon the degree of comprehensiveness with respect to considering the challenges presented by the described task setting:

Preventing invasive species in wetlands is crucial to protect its native biodiversity, maintain ecosystem balance, and ensure the health of vital water resources. Your robot will be deployed and begin its operation on land, then undergo the following task phases.

1. Terrestrial Navigation: Reach the waterfront by traversing through 5 meters of uneven, soft terrain covered with dense marsh, by considering effective locomotion techniques. Expect that the path is covered by unstructured obstacles, including small rocks and vegetation masses.

2. Amphibious Transition: Successfully transition from the terrestrial to the aquatic envi- ronment. Note that wetlands typically have varying terrain slopes; As such, your robot must be able to descend a 1 meter shoreline with a slope of 10° (approximately 6H:1V) in a controlled manner to become fully waterborne.

3. Aquatic Navigation: Navigate to the designated underwater survey zone, which is po- sitioned 5 meters away from the shoreline.  Due to the rich aquatic vegetation found in wetlands, your robot must be able to effectively maneuver through volumes covered in water ribbons without getting entangled.

4. Invasive Species Identification: Within the survey zone, use imaging sensors integrated within your robot design to locate and identify invasive flora species.  A successful in- spection requires documentation.  Upon identifying the target, the robot must position itself stationary to capture a clear image for subsequent analysis.   Integrate adequate illumination equipment into your design to compensate for poor lighting conditions un- derwater.

5. Water Sample Collection: To get a better understanding of the environmental effects caused by the invasive species, your robot must also collect a water sample of 150mL, which will facilitate the analysis of water quality and discover the presence of pollutants.

6. Mission Egress and Return: After logging the evidence, the robot must safely egress the aquatic zone by navigating back to the shoreline and transition back to the terrestrial zone.

Project Details:

1. Research and Concept Development:

•  Investigate existing amphibious robots and their locomotion mechanisms.

•  Research power systems and waterproofing techniques for dual-environment oper- ation.

•  Research control systems and autonomous navigation algorithms.

•  Explore different types of sensors suitable for amphibious operation under the spec- ified task setting

2. Design Specifications - Create a comprehensive design plan for an amphibious robot for wetland environmental inspection purposes under the aforementioned task setting, by considering robotic components such as:

Locomotion system (wheel-propeller hybrid, leg-propeller system, etc.)

•  Degree of freedom and maneuverability requirements

Materials and components (waterproof motors, buoyancy control, sensors)

Imaging equipment (underwater light, camera)

Water sampling mechanisms

•  Control system architecture (micro controller, communication systems, algorithms)

•  Power management system for extended operation

3. Realization: Develop a proof of concept to realize your robot design.  The purpose of this is to validate your design concept.  You may choose to expand on any of the key components to demonstrate your robot design’s feasibility in the context of the presented task setting. This may involve:

Prototyping: Creating a CAD model of your proposed design, or developing a functional prototype using appropriate materials (3D printing, waterproof electron- ics, etc.); Integrating adequate sensors for data collection and or control systems for locomotion.

Programming: Developing control software for autonomous navigation, data ac- quisition, or path planning algorithms for efficient inspections.

4. Testing and Iteration (if possible): Testing and iteration are crucial steps in the robotics design process, enabling continuous improvement and refinement. If you have completed prototypes, we would love to see them in action. Demonstrate your robot design by:

•  Testing the maneuverability of your prototype in both terrestrial and aquatic envi- ronments.

•  Testing your prototype in a simulated environment mimicking the task description. Finally, consider ways in which you could iterate and improve your robot design.

Deliverables:

A detailed project report (no longer than 10 pages) including:

Research findings and literature review

Design specifications and rationale

Prototyping process and challenges (if applicable)

Control and Data collection algorithms (if applicable)

Testing methodology and results (if applicable)

•  A 15-minute presentation (Nov.26) followed by a short Q&A session to demonstrate your design and findings.

Submissions:

•  Submit your report (in PDF format) and presentation slides (in PowerPoint format) via Canvas by 11:59 PM, Nov 25 (Tuesday), one day before your presentation.

Evaluation Criteria:

•  Innovation and creativity in amphibious design

•  Practicality of the robot with respect to the challenges presented by the task setting

•  Completeness and integrity in design rationale for the robot

Quality of the report and presentation

Teamwork and collaboration

Important notes:

1.  Form a group of 3 students (by Oct.29) by joining the same group on Canvas→ People→Final Project. Students without a group until then, will be automatically assigned a group.

2.  One group only needs to submit one report (in PDF format) and one PPT file. In the re- port, please state the contribution of each member in the form of xx% by self-evaluation. For instance, member A:50%, B:30%, C:20%. If no self-evaluation is provided, we will give equal marks to all members in your group.

3.  For the sake of time, all students should use the computer in the classroom for their presentation.   Your PPT slides will be uploaded to the computer in the classroom in advance.

4.  The weight of the mark (Total 30%):

Report (15%)

PPT & Presentation (5% from us and 10% from your classmates)

A 15-minute presentation followed by a short Q&A to share your work with the class.

Each group will rank all the other groups except theirs.  Marks will be given based on the average ranking, i.e., 1st:  10 marks, 2nd: 9 marks, . . . .

References:

https://iowalearningfarms.wordpress.com/wp-content/uploads/2023/05/wetland-plant-zones.jpg

https://www.pliantenergy.com/robotics

https://www.youtube.com/watch?v=hQSdTFlYVSY

https://www.nature.com/articles/s41586-022-05188-w



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图