代做Trading Strategies代做Python语言

Project Assessment, Group Project: Student Guide

Title

Trading Strategies

Due Date

Part A: End of Week 8, Sunday 9:00pm 9-Nov-2025

Part B: End of Week 10, Sunday 9:00pm 16-Nov-2025

Weighting

Part A: 15%

Part B: 15%

Task

Written Report

Word Limit

Part A: 1,500 Word maximum excluding charts, tables, diagrams, etc.

Part B: 1,000 Word maximum excluding charts, tables, diagrams, etc.

Submission

Via Moodle

1. Overview & Goals

This group project assessment provides the opportunity to apply quantitative analysis to the development of and/or evaluation of trading strategies. You will work collaboratively within a team to analyse financial data and implement quantitative research, such as conducting backtests and/or developing models, preferably based on real historical intraday data.

1.1. Learning Outcomes Assessed

This assessment addresses the following Course Learning Outcomes (CLOs):

•    Demonstrate an in-depth understanding of the principles, practices, and complexities of financial technology and innovation within global financial systems

•   Critically analyse and evaluate real financial problems using technological solutions and data driven decision making frameworks

•   Collaborate effectively within diverse teams to deliver well-structured and professional group outputs that reflect critical thinking and strategic planning.

1.2. Goals / Objectives

The objectives of this assessment are to:

•   Work collaboratively in a team environment to achieve shared goals

•   Gain further experience in use of financial market microstructure data, including the ability to identify and select appropriate datasets for analysis

•    Develop domain knowledge in an area of personal interest within trading markets

•    Display problem solving skills useful in quantitative research such as initiative, creativity and original thinking.

2. Instructions

Preparation: Review key concepts from lectures and readings.

Dataset: You will need to source data to complete the Group Project. If you have trouble identifying a suitable dataset, contact the Course Convenor for further guidance.

Submission: Both Part A & Part B require submission of:

o Report – detailing methodology, analysis and conclusions as a PDF

o Code or Spreadsheet – any computational scripts, e.g. Python, R or spreadsheets, e.g. Excel, used for analysis

o AI Transparency – if AI tools (e.g. ChatGPT, ML models) are used, students must document their usage and provide justification.

In summary, as a team, you will submit two (2) well structured reports, incorporating your research and analysis results with critical reflection. Higher marks will be awarded to projects that use logical data driven arguments and display understanding that extends beyond the standard course materials.

3. Assessment: Part A

Step 1: Team Formation & Role Allocation

Students must form. teams and submit their group details via Moodle. If no selection is made, automatic allocation will be made by the Course Convenor. It will also be helpful if you allocate roles to all team members.

Step 2: Project Topic Selection

As per the Course Outline the scope for topic selection is quite broad, but typically the Group Project will involve

•    Design and backtest a trading strategy using historical intraday market data

As an alternative, modelling & analysis of a key trading strategy input.

Step 3: Data Sourcing, Data Processing & Background Analysis

Source data for your topic, then clean the data, if applicable

•    Perform. any necessary background analysis, e.g. statistics & microstructure metrics

Step 4: Trading Plan Development

Construct a set of well defined rules to implement your trading strategy.

Step 5: Backtesting & Out of Sample Testing

•   Conduct initial quantitative analysis based on a limited data sample.

4. Assessment: Part B

Step 6: Strategy Evaluation

•    Review initial analysis, add any further performance, risk & other relevant metrics.

Step 7: Strategy Refinement

•    Explore ways to refine your trading strategy, such as optimisation of key parameters in the trading plan and/or conducting further research and analysis

•    Include an explanation of any changes made to your trading strategy

•    Repeat the backtest.

Step 8: Critical Reflection

•   What are the strengths and limitations of your work ? Please include data to support your arguments and/or tables, charts etc.

•    Provide your top three (3) recommendations to improve the implementation of your analysis in a real world setting and explain your reasoning.

Step 9: Peer Evaluation

Using Moodle Team Evaluation Tool, you will be required to provide feedback on your peers with respect to:

•    Engagement and participation, technical contribution, communication and collaboration, Timeliness and reliability, Initiative and critical thinking

Comment on the contribution, any challenges & possible differentiation for your peers.

Appendix A: Design & Backtest a Trading Strategy

A.1: Team Formation & Role Allocation

Students must form. teams and submit their group details via Moodle. If no selection is made, automatic allocation will be made by the Course Convenor. You don't need to notify the Course Convenor about your choice of groups unless you have a non-standard request.

It will also be helpful if you allocate roles to all team members, typical teams consist of:

•   Trading – usually involves deep financial market and financial product knowledge, e.g. market microstructure, derivatives versus cash products

•   Quantitative Analysis – statistical analysis and mathematical modelling

•   Technology – in this context will be coding, but usually also includes physical hardware

Sales – in this context would focus on writing the reports

•    Risk – in this context has a specific focus on trading strategy evaluation and refinement.

A.2: Trading Strategy Selection

•    Provide a clear statement of your trading strategy and include all key assumptions necessary for implementation

•    Please also include an explanation on why you selected the specific trading strategy

•    Design and backtest a trading strategy using historical intraday market data

The following questions may provide a systematic way to select your trading strategy:

What is your 'Edge' ? What areas of markets interest you ?

What Time Horizon do you prefer ? High, Medium, Low Frequency

•   What Asset Class do you find interesting ? What Asset Class do you understand best ? Select between Equities, ETFs, Cryptocurrencies, Fixed Income, Currencies,

Commodities, New Economy Markets, e.g. Carbon Credits, ESG Strategies

•   What Data can you access ? All students have access to Factset

•   Which Trading Strategies do you understand best or wish to learn more about ? Market Making, Directional, Arbitrage

A.3: Data Sourcing, Data Processing & Background Analysis

•   Obtain a dataset for your topic, then use a tool of your choice (e.g. Excel, Python, R) to clean the data, if applicable

Split the data in preparation for backtesting and out-of-sample testing

•    Perform. any necessary background analysis, e.g. statistics & microstructure metrics

A.4: Trading Plan Development

•    Formulate a trading plan for your strategy, the following steps are recommended:

o Trade Entry Criteria

o Trade Exit Criteria

o Position Size Determination

o Trade Execution Rules.

A.5: Backtesting & Out of Sample Testing

•    Using an initial but limited data sample, perform. a backtest by applying your trading strategy to historical data to simulate how it would have performed in the past

•   Calibrating your trading strategy on the initial dataset, then conduct out-of-sample testing on a separate unseen portion of historical data

•    Provide introductory evaluation of the backtest & out-of-sample results with respect to:

o Performance analytics, e.g. total & annualised returns, CAGR, number of trades, win rate, alpha, beta & correlation

o Risk measures, e.g. volatility, average true range (ATR), value-at-risk, expected shortfall, maximum drawdown

o Risk return metrics, e.g. Sharpe, Sortino, Treynor & Information Ratios

o Equity curve of cumulative returns over the test period

o Other metrics, e.g. turnover, capacity, P&L + holding period distributions

•    [Advanced students can attempt forward testing by application of your trading strategy using real time data, without actual execution, to simulate how strategy performance in a live environment and observe operational factors like data lags, execution frequency, and dynamic market conditions.]

A.6: Strategy Evaluation

Review the initial analysis from your backtest, then add further

•    Performance analytics, as appropriate

•    Risk assessment measures

•    Risk / Return metrics

•   Other metrics, if relevant.

A.7: Strategy Refinement

Explore ways to refine your trading strategy, such as:

•   Optimisation of key parameters in the trading plan

•    Further research and analysis, i.e. algorithm modifications for

o More realistic modelling, e.g. transaction costs, short selling restrictions

o Market announcements, e.g. company earnings, event flags, sentiment analysis

o Seasonality and/or time of day effects.

o Price prediction model improvements, e.g. AI / ML / advanced statistics

o Risk management improvements, e.g. advanced inventory management,

adverse selection models, volatility indicators, advanced liquidity measures

•    Repeat the backtest with the refined trading strategy, i.e. conduct a new backtest that incorporates any changes to the original trading plan

•   Compare the results between your initial and subsequent backtest.

Appendix B: Key Trading Strategy Inputs

An alternative to designing and implementing a trading strategy is to conduct modelling and analysis on a key input to a trading strategy. Below are potential topics for a Group Project.

B.1: Market Microstructure

•    Intraday Volatility Calculations, e.g. data selection, optimal historical holding period, fundamental vs. transitory volatility, other metrics such as average true range (ATR)

•    Intraday Price Prediction Models, e.g. combine Order Book and Trade Feed data or use of Artificial Intelligence (AI) / Machine Learning (ML) models

•   Adverse Selection models such as Probability of Informed Trading, e.g. analysis of Trade Feed data using Broker IDs.

B.2: Market Making

•   Target Profit Analysis, i.e. Spread measurement, trading volume & risk analysis across an entire market (e.g. Stocks, ETFs) to identify the optimal use of capital

•    Inventory Management, e.g. develop an Inventory model that accounts for advanced issues such as intraday volatility, adverse selection, extreme stress, market impact, multi asset hedging, multi venue allocation, time of day effects

•    Market Order Analysis, e.g. order size, arrival rates, time of day effects

•   Optimal Execution, e.g. when to use market vs. limit orders based on Order Book & Trade Feed data.

If you are interested in exploring any of the above topics, contact the Course Convenor for further information.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图