代写Syllabus for STAT 3301: Statistical Modeling for Discovery I帮做Python语言程序

Syllabus for STAT 3301: Statistical Modeling for Discovery I

Autumn 2024 — 3 credit hours

Course meeting times and locations: MWF 10:20-11:15pm or 11:30-12:25 in Pomerene 150

Prereq: C- or above in 3202; or 4202 and 5730; or permission of instructor.  Prereq or concur:  Math 2568, or permission of instructor.

Required Text: Applied Linear Regression, Fourth Edition (2014) by Sanford Weisberg.

An electronic version of the text can be accessed for free through The Ohio State University Libraries at https://library.ohio-state.edu/record=b7651844~S7.  You will need to click on “Connect to re- source EBSCOhost”; you may also need to supply your OSU credentials.  The online resource is best suited for screen reading; each individual is allowed to print/e-mail/save/download a limited number of pages.

Required software:

•  This class requires you to use the free statistical software package called R  (The  R  Project  for Statistical Computing; http://www.r-project.org/).

You can download R for Windows, Mac, and Linux, from the CRAN archive at https://cran. r-project.org.

An  in-depth  introduction  to  R  is  available  at http://cran.r-project.org/doc/manuals/ Rintro.pdf

Hands-on tutorials are available in the Swirl system, which you can learn about at http:// swirlstats.com/.  In particular,  “R Programming:  The basics of programming in R” is an appropriate first tutorial for students who have never used R.

•  An easier to use interface to R is available in the software package RStudio.  This package is available for Windows, Mac, and Linux and can be downloaded for free from http://rstudio.org. Note that RStudio requires R to be installed.

•  This class requires the use of the (free) R Markdown authoring framework to complete assignments. Information about R Markdown will be provided in class; an online guide with overview information can be found at https://rmarkdown.rstudio.com.

Website: Please visit http://www.carmen.osu.edu/. Carmen is used extensively for this course, so you should check daily for announcements about the class and other class material.  Contact the IT Service Desk at 614-688-4357 (HELP) for help with access.

Course Description: Statistical models for data analysis in the linear regression framework.  The chal- lenges of developing meaningful models for data are explored, with emphasis on the model building process, the use of numerical and graphical diagnostics for assessing model fit, and interpretation and communica- tion of results. Statistical foundations are introduced along with basic inferential techniques.

Learning Outcomes: By the end of this course, students should successfully be able to:

•  Use graphical and numerical summaries of data to describe relationships between variables.

•  Formulate, fit, evaluate, and compare regression models that describe relationships between variables.

Understand and be able to describe the statistical foundations of standard regression models.

Identify common violations of the assumptions that underly standard regression models.

•  Perform a complete regression analysis and communicate the results in both statistical and problem- specific terms.

Distinguish between descriptive and causal interpretations of regression.

Homework:

Description: There will be ten homework assignments. Homework problems that require R software should be completed in R Markdown and a knitted html file should be uploaded.  Homework problems that do not require R may be handwritten (electronically, or on paper and scanned) and uploaded to Carmen by the due date.  All work and software output should be uploaded as a single pdf file unless stated otherwise.

Academic  integrity and collaboration: The purpose of the written homework is to assess and provide feedback on your understanding. Therefore, answers with little or no explanation or work shown will receive no credit. For the homeworks as well the exams, your solution should be clear and detailed to explain your understanding of the course.

While grading the homeworks, it may not be possible for us to provide detailed explanations on each question that is graded.  To make up for this, I will endeavor to create homework solutions that are detailed enough to allow you to understand how the question could be approached.  You may consult with other students, however, the work submitted must be your own.

Data analysis assignment:

Description: here will be an individual, comprehensive data analysis project that will be completed by the end of the semester. Expect details on the project to be posted in early November.

Academic  integrity  and  collaboration: The  data analysis project is individual and should be treated as such.  It should be completed without any external help or communication. Sharing of code or other discussion between students is strictly prohibited.

Exams:

Description: There will be three midterm exams.  The midterms will be held during lecture on the dates listed in the schedule.

Academic integrity and collaboration: You must complete the midterm and final exams yourself, without any external help or communication. Sharing of any items such as calculators or formula sheets is prohibited. Again, answers with little or no explanation or work shown will receive no credit. Students are strongly advised to prep a formula highlight sheet in advance.

Late assignments policy:

Assignment solutions will be posted shortly after the submission deadline.  No late assignments will be accepted without prior permission and/or formal documentation.  Please refer to Carmen for due dates.  Accommodations can be made in case of severe illness,  so please notify me as soon as possible if this situation arises. Deadlines are crucial in order, among other things, to:

Get grading done and provide feedback in a timely manner

•  Grade all assignments at the same time to maintain consistency and fairness

•  Provide a mechanism to help ensure students keep up with the material and are prepared for follow-on lectures

•  Protect students from their inability to predict their own future behavior —  “I’ll somehow manage to catch up at the end of the semester.”

Course attendance policy:  You  are  expected to attend all lectures. I will take attendance at lecture, and students are responsible for all material covered in class.  I intend to simulcast lectures on zoom for students who are sick, but I will not record lectures or provide annotated notes.  Students should keep all electronics closed during class with the exception of taking notes on a tablet. Office hours should not be used for instruction on material that has already been covered in class.

Course technology: In addition to R software, students are expected to have a basic working knowledge of The Microsoft Office software.  All  Ohio State students are now eligible for free Microsoft Office 365. Visit the go.osu.edu/office365help help article for full instructions.

Final Grade: Your final course grade will be based on the following weighting of assessment components:

Category

Percentage

Homework

20

Exam 1

20

Exam 2

20

Exam 3

20

Final project

30

Less weakest category

-10

Total

100


Grading Scale:

Grades will be assigned according to the scale below, with course components weighted as listed above.

93-100 = A

90-92.9999 = A-

87-89.9999 = B+

83-86.9999 = B

80-82.9999 = B-

77-79.9999 = C+

73-76.9999 = C

70-72.9999 = C-

67-69.9999 = D+

60-66.9999 = D

< 60 = E

E-mail Correspondence: In order to protect your privacy, all course email correspondence must be done through a valid OSU name.nn account. Please use the correct email address.  ([email protected] not @buckeyemail.osu.edu). Please write “STAT 3301” somewhere in the subject line, as this will help me to quickly identify and reply to class emails. It is reasonable to expect a response within one business day.

Other information: Other standard university boilerplate can be found here: https://asccas.osu. edu/curriculum/syllabus-elements.

Copyright: The materials used in connection with this course may be subject to copyright protection and are only for the use of students officially enrolled in the course for the educational purposes associated with the course.  Copyright law must be considered before copying, retaining, or disseminating materials outside of the course.

Disclaimer:

The planned instruction for this course may be disrupted for a number of reasons.  Such disruptions may affect individual students for a brief period of time, the entire class, the instructor, or the entire university. If the class is disrupted, we will adjust as needed.  The adjustments may include changes to course delivery, assignments, grading of assignments, and determination of final course grade. Please pay special attention to announcements in class and over Carmen. Failure to address every possible scenario in this syllabus does not override your responsibility to exercise basic common sense. If in doubt about any course policy, ask in advance!

Acknowledgemnt:

Thank you to Dr.   Steephanson Anthonymuthu for his kind sharing of advice  and course materials in preparation for this semester.


Tentative Course Schedule

Week

Dates

Topics, Holiday, Homework, and Exam Dates

1

8/27-8/29

Intro.

2

9/1-9/5

Correlation. Labor Day 9/1

3

9/8-9/12

SLR model. HW1 9/8

4

9/15-9/19

Inference and prediction with SLR. HW2 9/15

5

9/22-9/26

Sums of squares HW3 9/24 MT1 9/26

6

9/29-10/3

Diagnostics and transformations. HW4 10/3

7

10/6-10/10

MLR model. HW5 10/10

8

10/13-10/17

Polynomial regression. Fall Break 10/17

9

10/20-10/24

MLR inference. HW6 10/20

10

10/27-10/31

Confidence and prediction intervals. HW7 10/27 MT2 10/29

11

11/3-11/7

Categorical predictors. HW8 11/7

12

11/10-11/14

Categorical and continuous predictors. Veterans Day 11/11

13

11/17-11/21

Multifactor models. HW9 11/17

14

11/24-11/28

Model comparison. Thanksgiving 11/26-11/28

15

12/1-12/5

Cross validation. HW10 12/1 MT3 12/3

16

12/8-12/10

Stepwise and nonlinear regression.

FINAL PROJECT DUE: 11:59pm, Tuesday, December 16.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图