代做EE5434 final project代做Processing

EE5434 final project

Data will be available on Oct. 2

https://www.kaggle.com/t/0e5f2d6870f7451893f45239bcb34181

Report and source codes due (deadline):  11:59PM, Dec. 6th

Full mark: 100 pts.

During the process, you can keep trying new machine learning models and boost the learning accuracy.

You are encouraged to form. groups of size 3 with your classmates so that the team can implement multiple learning models and compare their performance. If you cannot find any partners, please send a message on the group discussion board and briefly introduce your  expertise. In the worst case, we can match you with students lacking group members. If you prefer to do this yourself, you can get 5 bonus points.

Submission format: Report should be in PDF format. Source code should be in a notebook file (.ipynb) and also save your source code as a HTML file (.html). Thus, there are three files you need to upload to Canvas. Remember that you should not copy anyone’s codes.

Files and naming rules: For example, if the team members are:  Jackie Lee and Xuantian Chan, name it as JackieLee-XuantianChan.xxx. 5 pts will be deducted if the naming rule is not followed. In your report, please clearly show the group members.

How do we grade your report? We will consider the following factors.

1.   You would get 30% (basic grade) if you correctly applied one learning model to our

classification problem. The accuracy should be much better than random guess. Your report is written in generally correct English and is easy to follow. Your report should include clear explanation of your implementation details and basic analysis of the results.

2.   Factors in grading:

a.   Applied/implemented and compared at least 2 different models. You show good sense in choosing appropriate models (such as some NLP related models).

b.   For each model, clear explanation of the feature encoding methods, model structure, etc. Carefully tuned multiple sets of parameters or feature engineering methods. Provided evidence of multiple methods to boost the performance.

c.   Consider performance metrics beyond accuracy (such as confusion matrix, recall, etc.). Carefully compare the performance of different methods/models/parameter sets. Being able to present your results using the most insightful means such as tables/figures etc.

d. Well-written reports that are easy to follow/read.

e.   Final ranking on Kaggle.

For each of the factor, we have unsatisfactory (1), acceptable (2), satisfactory (3), good (4), excellent (5). The sum of each factor will determine the grade. For example, student A got 4 good and 1 acceptable for a to e. Then, A’s total score is 4*4+2=16. The full mark for a to e is 25. So, A’s percentage is 64%.

Note that if the final performance is very close (e.g. 0.65 vs 0.66), the corresponding submissions belong to the same group in the ranking.

Factors that can increase your grade:

1.   You used a new learning model/feature engineering method that was not taught in

class. This requires some reading and clear explanation why you think this model fits this problem.

2.   Your model’s performance is much better than others because of a new or optimized method based on the data properties.

The format of the report

1.   There is no page limit for the report. If you don’t have much to report, keep it simple. Also, miminize the language issues by proofreading.

2.   Write down the name and Kaggle user name (not the team name) of your team members.

3.   To make our grading more standard, please use the following sections:

a.   Abstract. Summarize the report (what you done, what methods you use and the conclusions). (less than 300 words)

b.   Data properties (data explortary analysis). You should describe your understanding/analysis of the data properties. For example, what is the distribution of the classes (balanced/imblanced). Use a table/figure to visualize this.

c.    Methods/models. In this section, you should describe your implemented models. Provide key parameters. For example, what are the features? If you use kNN, what is k and how you computed the distance? If you use ANN, what is the architecture, etc. You should separate the high-level description of the models and the tuning of hyper-parameters.

d.   Experimental results. In this section, compare and summarize the results using appropriate tables/figures. Simplying copying screening is acceptable but will lead to low mark for sure. Instead, you should *summarize* your results. You can also compare the performance of your model under different hyperparameters.

e.   Conclusion and discussion. Discussion why your models perform well or poorly.

f.    Future work. Discuss what you could do if more time is given.

4.   For each model you tried, provide the codes of the model with the best performance. In your report, you can detail the performance of this model with different parameters.

The code

The code should include:

1.   Preprocessing of the data

2.   Construction of the model

3.   Training

4.   Validation

5.   Testing

6.   And other code that is necessary


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图