代写COMM1190 Data, Insights and Decisions ASSESSMENT 2 Term 1, 2025代做Python编程

ASSESSMENT 2 GUIDE

COM Ml190

Data, Insight s and Decisions

Term 1, 2025

Assessment 2: Predictive Analytics Project

Context of assessment tasks

Following the initial data exploration in Assessment 1, the senior management of Dolphin Theme Park has approved further analysis of activities and sales using an expanded data set. These data have now been extended, with extra variables being added. The core task will involve a comparison of predictive models and subsequent recommendations on how to use and improve these to inform. future sales.

You and your team have been tasked with investigating alternative algorithms for predicting visitor revenue. The General Manager (GM) has given you the authority to use your expert judgment to make the necessary modelling choices but has outlined an overarching research plan for you and your group to follow:

•     Currently, the GM has assigned a regression model for each of your team members to run in Stage 1 with the current focus on predicting revenues.

•    As a team, you need to meet and compare the results of each of your regression models performed in Stage 1 and perform. a quick comparison of all your team members’ models.

•     In Stage 2, you can formulate a more reliable model using a regression tree or multiple linear regression (MLR) to predict the revenue; in other words, you can improve on the suggested models provided by the GM in Stage 1.

•    Your evaluation of predictive performance should include a comparison of the preferred predictor with that generated by your chosen regression-based predictor.

•     Based on this analysis, make recommendations on whether the use of such algorithms in initiatives targeting visitors with the ultimate objective of generating more revenue.

Stage 1:Task Instructions

While reporting is done in two stages students are encouraged to commence their collaboration within their group early in the process before the submission of the Stage 1 individual reports.

Complete the  2-page  individual task  on the template  provided  in  Appendix  B  using  a  data  set  specific  to  your Assessment 2 project group. This first-stage submission contains key inputs into the group work that will result in the single group report produced in Stage 2. Students who do not submit a complete, legitimate attempt at this assessment will not be awarded marks for Stage 2. [i.e.: legitimate attempt means that the Appendix B + R Script has been duly uploaded on Turnitin within the prescribed due date]

This individual task in Stage 1 will be separately assessed. However, the marks and feedback for Stage 1 will be released together with Stage 2.

The Appendix B outlines the three key areas of the assessment 2-stage 1:

•     you are required to perform. data wrangling and cleaning:

•     split the sample into training and test data sets

•     run the assigned model based on training data

•     evaluate the model's predictive accuracy under both training and test data.

In Stage 1, a new personalised dataset has been generated with the ‘ Pass’ variable being removed and new variables added-namely ‘ Revenue’, ‘ Rain’, and Promotion’, as defined in the revised data dictionary in Appendix A. Revenue aggregates the revenue from rides and shows, merchandising, and food and beverages. Rain is the categorical variable whether there is rain or not. Promotion is the binary variable that indicates whether the promotion campaign was targeted or not before the visitors entered the park. The GM has suggested a base regression model for the prediction:

Revenue = βo  + β1Agei  + β2passTypei  + β3 Genderi  + μi

Each member of the respective team shall use one of the following modified models, as long as two members do not use the same model:

A: Add HostRating’ to the base model.

B: add QueueTimeto the base model.

C: add  FoodBeverage’ to the base model.

D: add Merchandising’ to the base model.

If there are two members in a team, they should choose A and B. A group of three members shall choose A, B, and C.

Stage2: Task Instructions

As a group, use the results from Stage 1 to produce a report to the executive management. You will use R to explore a dataset that includes the same expanded personalised dataset as in Assessment with extra variables (see attached Appendix A Data Dictionary). A group-specific data set will be determined by nominating the ZID of one of the group members to generate the single data set used by all group members in both stages of the project.  Details for obtaining the personalized group-specific data set will be provided on Moodle.

Your Stage 2 group mark will be common to all students in your group who have submitted a complete, legitimate attempt at Stage 1.

The group task is outlined below:

•     Present a brief comparison of the Stage 1 results of your team members by comparing the accuracy of the Stage 1 models, to inform. the choice of data and preferred predictive model to use in predicting revenue.

•     You are expected to generate a more robust model predicting revenue.

•     You are required to use data visualisation in your report.

•    Your report should explain your strategy, subsequent analysis, and the recommendations that follow.

•     Include a critical evaluation of the predictors' strengths and weaknesses and any potential improvements, as management will continue to focus on this. Critical evaluation can be conducted by comparing the accuracy metrics of alternative models on both test and training data sets.

•     Use the Assessment 2 marking rubric for the Stage 2 group submission as a tool to check your work before submission and to ensure that you have addressed the assessment task in full.

Your Stage 2 submission should be a report to the General Manager. Use the initial report provided in Assignment 1 to guide you. Your Stage 2 Report should be approximately the same length (i.e.: 4 pages) and structure (i.e.: introduction, body, and recommendation) as that report, although the section headings of the body will likely change, and the emphasis on graphical presentations is likely to be less. Ultimately decisions about presentation are to be made by your group.

Your group must also submit a separate file containing the R code used to conduct your analysis and generate your visualisations. Your submission will be deemed incomplete and given a mark of zero if such a file is not included.

Overall, the assessment is designed to help you develop your skills in using R for data analysis and in communicating insights from such exercises.



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图