代做COMM5000 Data Literacy Term 1, 2025代写Java编程

ASSESSMENT GUIDE

COMM5000

Data Literacy

Final Report

Housing Market Trends & Affordability: A Data-Driven Business & Policy Analysis

Term 1, 2025

CASE STUDY INFORMATION-- Housing Market Trends & Affordability Project Statement

Business and Economic Context

The housing market is a critical sector influencing government policies, financial institutions, real estate investors, and urban planners. Property prices, affordability, and market trends impact economic stability, investment risks, and infrastructure development.

Government housing agencies need to assess affordability trends to develop policies for first-time homebuyers and low-income families. Real estate investors and developers require insights into high-growth suburbs to determine where to build or invest. Financial institutions and banks analyse property data to evaluate mortgage risks and loan eligibility. Urban planners and infrastructure authorities depend on market insights to plan future housing projects based on demand and population growth. These stakeholders rely on data-driven analysis to make informed decisions about housing policies, market investments, and economic development.

In major cities like Sydney, Melbourne, and Brisbane, housing affordability is a growing concern. With property prices outpacing wage growth, many struggle to enter the market, increasing the need for government intervention and affordable housing initiatives. Monitoring housing trends helps policymakers craft effective policies to improve homeownership access and ensure fair housing opportunities.

Beyond affordability, real estate is a key driver of employment in construction, finance, and property services. The Reserve Bank of Australia (RBA) adjusts interest rates in response to market shifts, influencing mortgage holders and consumer spending. Rapid price surges may require regulatory adjustments to maintain economic stability. Analysing property data enables decision-makers to anticipate market changes and implement necessary financial measures.

For  many  Australians,  property  is  both  a  home  and  a  long-term  investment.  Housing  prices  impact  wealth  accumulation,  retirement  planning,  and intergenerational wealth transfer. Investors and financial institutions rely on market trends to assess risks and identify opportunities. Disparities between urban and regional property markets also shape internal migration as people and businesses seek affordability and economic prospects.

The Australian housing market is also shaped by global factors such as economic trends, immigration policies, and foreign investment. Economic downturns, trade shifts, and crises like COVID-19 have all impacted supply and demand. Tracking housing prices allows businesses and governments to anticipate risks and develop strategies for market resilience.

Studying housing prices is more than tracking property values—it is a fundamental part of economic planning, investment strategies, and urban development. By analysing real estate trends, decision-makers can shape policies that drive economic growth and improve the quality of life for Australians.

https://www.youtube.com/watch?v=P2chYfJ4cRs

https://www.youtube.com/watch?v=LBKIloe1Zuc

Your role as Data Scientist

As a Housing Market Analyst, your role begins with an Exploratory Data Analysis (EDA) using descriptive statistics and visualization techniques to uncover patterns, variations, and key trends in housing prices. This is the foundation of data-driven decision-making, where you will summarize distributions, identify outliers, and assess relationships within the data.

Once a clear understanding of the dataset has been established, the focus will shift toward formulating key hypotheses, allowing us to test theories and claims about the factors driving property prices. This step will help in identifying potential causal relationships, which will later be examined using statistical modelling and inferential techniques. Ultimately, this process will enable us to move beyond simple observations and establish evidence-based insights that support strategic decision-making in the housing market.

The Dataset: Australian Housing Market Overview

You will be working with a dataset containing real estate property records. The dataset includes information on property characteristics, pricing, and location details. The key categories of information in the dataset are:

◆ Location Data → State, suburb, street name, postcode.

◆ Market Information → Market price of the property.

◆ Property Characteristics → Building type, number of bedrooms, number of bathrooms.

◆ Structural Features → Living area size, car area, outdoor area.

Final Report: Case Study Business Report

Report details

Week 11, Sunday May 4th 11:59PM

40%

Report: This is individual work. Reports will be checked for plagiarism.

1400-1700 words (5-8 pages not including tables, graphs, and references)

Via Moodle course site

Case Study Business Report: Applied Housing Intelligence for Reform

You are a Housing Market Data Analyst working for a cross-sectoral advisory taskforce led by the Department of Housing and Urban Infrastructure.   This taskforce was formed in response to mounting concerns around declining housing affordability, rising inequality, speculative bubbles in key suburbs, and uneven access to mortgage credit.

The purpose of this advisory group is to bring together diverse perspectives and expertise from across government, finance, planning, and development to build evidence-based housing policy reforms. Your role is to provide robust, ethically responsible, and actionable modeling insights that help resolve tensions between economic growth, market stability, and social inclusion in housing.

The final assessment simulates your culminating task as part of this taskforce.  You are responding to a series of stakeholder briefs, each grounded in plausible economic or policy concerns.  Your work builds on earlier insights (Milestone 1 and 2) and now requires you to synthesize those skills using more advanced techniques such as multiple regression,  causal  reasoning,  predictive  modeling,  and  theory- informed analysis.

Grounding Framework: The Hedonic Pricing Model

Before responding to the stakeholder briefs, you are required to ground your analysis in the hedonic pricing model — a core economic framework used to estimate the value of individual characteristics of a differentiated good such as housing.

In theory, the price of a property Pi  reflects the sum of the implicit prices of its characteris- tics (X1i, X2i,..., Xki ), including structural (e.g., bedrooms, bathrooms), locational (e.g., proximity to CBD), and neighborhood features (e.g., school zone, crime rates).

Pi  = f(X1i, X2i,..., Xki ) + εi

By applying multiple regression, we estimate the function f(·) using observed data. This yields:

log(Pi ) = β0 + β1 X1i + β2 X2i + ... + βkXki + εi

This log-linear specification allows us to interpret coefficients as percentage  changes  in  price for one-unit changes in each attribute, holding others constant.  You will be using this structure as a benchmark. In the briefs, Hedonic model is also referred to also as log model. In fact, the latter is one interpretation of the Hedonic price model.

Stakeholder Briefs

1. Government Housing Policy Unit

”Recent  claims  suggest  that  home  prices   in  high-PIR   suburbs  have  grown  faster  than  income   in  the past five  years.   This  might  suggest  a  bubble.    We’re  considering  a  cap  on  developments  in  areas  where affordability has deteriorated the most.  But  is there really a  consistent pattern?”

Context: The government is under pressure to curb speculation and improve housing access. Your analysis should help determine whether PIR levels systematically predict higher price growth — and if so, under what conditions. Do prices behave differently in high-PIR suburbs once structural differences are controlled for? How might these patterns vary by state or property type?

2. Urban Planning Authority

”We’re updating zoning laws and want to know how much property features  (e.g., number of bedrooms, car space)  matter for price  in  different states.  Some people  say these  things  matter less  in  dense  inner-city markets than in suburban ones.  Is  this  true?”

Context: Planners want to know whether existing zoning restrictions align with how buyers actually value property features. Your task is to test the hedonic assumptions about structural attribute values and examine whether their implicit prices vary significantly by location or density. Are interaction effects (e.g., bedrooms × state) statistically and economically meaningful?

3. Mortgage Lender

”We’re  rethinking  lending  criteria.     There’s  concern  that  applicants  in  high-density  regions   are  over- leveraged despite lower property values.  We want to know:  do higher prices reflect true structural value, or are they inflated by speculative location factors?”

Context: Lenders need to assess collateral risk.  If locational premiums drive price inflation without structural justification, loan portfolios may be vulnerable. Your model should help decompose price into structural and locational components and assess whether some areas pose more risk due to overvalua- tion.  Consider using dummy variables for high-density postcodes or interaction terms to reveal hidden dynamics.

4. Private Developer

”We’re  building  a  new  mixed-use  development.    Our  sales  team  claims  that  adding  more  car  spaces  or ensuite bathrooms can raise the price significantly.  Can you help us forecast potential returns for different unit configurations?”

Context: Developers need evidence-based pricing for design choices. Your job is to simulate predicted prices (with CIs and PIs) for different hypothetical units using your hedonic model. Use model outputs to estimate returns on design changes, and discuss the risk of overcapitalising in certain suburbs or unit types.

5. Developer Planning Simulation

You are working with a mid-tier property developer planning a new residential project in the subur- ban fringe of Greater Melbourne. The project aims to deliver moderately priced, higher-density dwellings that balance affordability and lifestyle appeal for young families and downsisers.

The developer is evaluating whether to allocate more funding toward car parking, outdoor space, or higher-end finishes  (like ensuite bathrooms and brick veneer structures).  They’re particularly interested in understanding how these features are likely to impact expected sale prices under current market conditions, using historical data as a benchmark.

To assist in this investment decision, you’ve been asked to provide a price prediction for a proposed unit type:

“We’re targeting a middle-income couple looking to buy their first home. The property will be a 3-bedroom townhouse, built with modern detached design, offering two bathrooms, a car space of about 80 sqm, and a small garden area of 25 sqm.  It’s located about 30 minutes from Melbourne CBD in a growing suburb with high family appeal.”

6. Ethics and Public Interest Watchdog

”There  is  public  concern  about  algorithmic  bias  in  housing  data.    Some  developers  claim  their  models are  objective  —  but  we  worry  that  underrepresented  suburbs  or  buyer  segments  may  be  systematically excluded.  What are the  dangers here?”

Context: Ethical scrutiny is increasing. Your model must be examined for bias, omitted variables, or inference risks. Reflect on whether your results reinforce inequities. Are assumptions (e.g., linearity, zero conditional mean) violated? What mitigation steps could improve transparency and fairness?




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图