代做Homework 2代做Python程序

Homework 2:

Exercise 0.0.1. Find the autocovariance of the following ARMA(p,q) processes in the cases where there exists an stationary solution:

1. Φ(B)Xt = Zt , where Φ(z) = and n ∈ N.

2. Xt = Φ(B)Zt , where Φ(z) = and n ∈ N.

Exercise 0.0.2. Let Φ(z) and Θ(z) be polynomials of degree 2. Assume that there exists z1, z2 ∈ R such that Φ(z1) = Φ(z2) = 0. Let Φ ′ (z) be the derivative of Φ(z). Assume that Φ ′ (z) and Θ(z) do not share zeroes. Can the ARMA equations Φ ′ (B)Xt = Θ(B)Zt admit a causal solution in the following settings?

1. If z1, z2 ∈ [−1, 1];

2. If z1, z2 ∈ [2, 3]

Exercise 0.0.3. Fin the autocovariance generating function of the following ARMA processes:

1. Xt − 0.5 Xt−1 = Zt;

2. Xt = Zt + Zt−1

Exercise 0.0.4. Denote as B2(R) the set of processes {Xt}t∈Z such that

• Show that the function

is a norm.

• Show that B2(R), ∥ · ∥B2(R)) is a Banach space (Cauchy sequences converge).

• Show that the operator BXt = Xt−1 is a bijection (it is well defined and admits an inverse) on (B2(R), ∥ · ∥B2(R)).

• Let Φ(z) be a polynomial having all its roots in R. Assume that Φ(z) ≠ 0 for all |z| ≤ 1. Show that Φ(B) defines a bijection on (B2(R), ∥ · ∥B2(R)). (Decompose Φ as a product of degree one polynomials and use induction.)

• Under the setting of the previous point, let Φ(B)−1 be the inverse of Φ(B). Show that if Zt is stationary then Φ(B)−1 Zt is stationary. Conclude that the equation Φ(B)Xt = Zt admits a unique stationary solution. Is the solution causal?





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图