代做STAT 2450 Recitation Activity #3代写数据结构语言

STAT 2450

Recitation Activity #3

Numerical Summary Measures

OBJECTIVES

•   Students will compute measures of central tendency and variability.

•   Students will understand the connection between graphical displays & numerical summaries.

•    Students will identify statistics that are resistant to outliers through exploration.

Measures of Central Tendency and Variability for a Sample vs. Population:

The measures of central tendency discussed here (sample statistics) have corresponding measures in the population (population parameters).  One goal of this course is to use sample statistics to estimate population parameters.

Measure

Sample

Statistic

Population

Parameter

 

x

μ

 

x

μ

 

tr(p)

---

 

M

---

 

^(p)

p

 

2 s

2 σ

 

s

σ

PART I: VOCABULARY    Complete the sentence.

1.   [1 point]              skewed data has a sample mean that is larger than its median.

2.   [1 point] What are the 3 primary ‘calculations’ used in describing the center of a data set? Briefly define each of them.

PART II: DATA ANALYSIS

3.   The perceived stress levels of 30 employees are listed below.

55                35               43               40               46                58

12                37                40                32                46                48

39                74                43                52                35                29

28                43                34                  3                63                29

71                62                30                60                61                27

a.   [2 points] Create a frequency distribution of the data.

Class

Frequency

Relative

frequency

Cumulative

rel. freq.(CRF)

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

b.   [2 points] Sketch a relative frequency histogram based upon the frequency distribution in part(a).

c.   [1 point] Describe the center of the data.

d.   [2 points] Enter the data into R. Title the column Stress. Compare this histogram to the one created earlier.

Create a histogram by using the following code in R:

Open a excel file and input data under the column name “Stress” .  Save the data set in

.csv format (Stress.csv).

Click the “import dataset” button on the environment pane. Click the “From

Text(base)” option in the import dataset menu and select your dataset file.

Type “Stressdata” on Name field. Click “import” .

Or

Run the following code:

#download the Stress data set from Carmen site

# use file.choose("stress.csv") to locate the place you saved the dataset and copy and paste that place inside the read.csv() function

stressdata=read.csv("/Users/sanjeewaniweerasingha/Library/CloudStorage/OneDrive- TheOhioStateUniversity/OSUteaching/AAASTAT 2450/Summer 2025/Week 01 and

2/recitation/Rec 2/stressdata.csv")

Copy and paste the created histogram here.

hist(stressdata$Stress, main="Frequency Distribution of Stress data", xlab="class", ylab="Frequency")

PART III: Understanding visualization options in R

4.   Let’s start with the States data in the library carData This data set contains information regarding

each state’s (and the District of Columbia’s) population, verbal and math SAT scores, proportion of high school students taking the SAT, dollars ($1000) in state public education spending, and average teacher salary ($1000) in 1992.

Step I: Install the carData package by using the code install.packages(“carData”)

Package installation you have to do onetime, and then you may comment the above code with # symbol as follows

#install. Packages(“carData”)

Step II: Keep open the carData library in your working environment with the following code library(carData); you are not supposed to comment this code

Step III: Import the States data set by using the code data(State)

Step IV: Look at the details of the data set either by using View(State) or head(State) code.

(a). [1 point] Use the code ?States() to get the description of States data set on Help pane. What is the real meaning of dollar variable in this dataset.

(b). [3 points] Use the code class(States$pop) to determine the format in which R has stored this

variable. Then, find the variable type/format for the following variables and state whether these variables are categorical, numerical discrete, or numerical continuous type variables.

Region:

Percent:

Dollars:

(c) [3 points] Draw the histogram and make modifications using the following code for the SATV

variable. Don't forget to label the x-axis and y-axis, and to add a title to the histogram. Arrange all these histograms in a grid of (1,3).

par(mfrow = c(1, 3))  # 1 rows, 3 columns

hist(States$SATV)

#You may change the default class with by using break option inside hist function

hist(States$SATV, breaks=10)

# Or you may control more the starting and ending points in x axis by using

hist(States$SATV,  breaks = seq(300, 600, by = 25))

# Here we used the seq() function to create a sequence of values from 300 to 600,

# increasing by 25. Run seq(300, 600, by = 25) to see the generated sequence.

(d). [3 points] Run the following code to create a pie chart of the region variable and paste it here.

pie(table(States$region))

If you want to  include the calculated percentages in your plot, please follow the following code

region_counts <- table(States$region) #Create a frequency table

percentages <- round(100 * region_counts / sum(region_counts), 1) #Calculate percentages

labels <- paste(names(region_counts), ":", percentages, "%") #Create labels with percent

pie(region_counts, labels = labels, main = "Region Distribution with Percentages") #Draw pie chart with labels

5.   [1 point] The following data are the blood types (A, B, AB, O) of 15 individuals. Find the

distribution of blood types. Express the distribution in terms of frequencies and percents. Why would a distribution of blood types be useful to a hospital?

 



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图