代写ECON8022 - MACROECONOMIC THEORY Assignment 2-B代写留学生Matlab语言程序

ECON8022 - MACROECONOMIC THEORY

Assignment 2-B - Fiscal Policy in OLG and NG Models

1   Problem 1: Multi-period OLG model with inelastic labor (OLG Model of Australian economy - OLGA)

Consider a close economy lled with overlapping generations and a competitive rm. The model period is equivalent to 15 years.

The household sector consists of 4 overlapping generations. Each time period a new house- hold is born and lives for four periods (J = 4). The size of newborn generation is normalized to 1. The household is endowed with 1 unit of time and age-speci c labor productivity (hj) each period. The household works full-time for 2 periods and retires in the last 2 periods. The household preferences are given by

The household chooses a sequence of consumption and saving to maximize his discounted lifetime utility according to

subjected to period by period budgets constraints

where, j stands for agent's age at the calendar time t+j-1, cj,t+j-1 and sj,t+j-1 are consumption and saving at age j, and wt  the market wage rate and rt  is the market interest rate at the time t. Note that, the lifetime budget constraint has a form of

The production sector consists of a representative  rm that has the following production technology where Y output, A is total factor productivity, K is capital stock, and H is e ective labor (e.g., human capital). Capital depreciation rate is δ . The  rm's opti- mization problem is given by

where wt  is the market wage rate and qt  is the rental rate.

a)  Assume that h1  = 1, h2  = 1.5, β = 0.98, σ = 2, A = 1, α = 0.33 and δ = 0.05. Find the steady state solution numerically, using two computational methods: (i) Fsolve function and (ii) Gauss-Seidle algorithm.

b)  Calibration of the benchmark model: Adjust β to match the annual market interest rate of 4%. Report the life-cycle pro les of consumption and savings when r = 4%.

c)  Suppose the government appears and introduces a PAYG social security program that pays pension bene ts for retirees

where Ψ is a replacement rate. We assume the government set Ψ = 30%. The household period by period budgets are given by

The social security program is self- nanced so that

where τss  is a social security tax that adjusts endogenously to balance the social security program every period.

Now assume the economy is in steady state.  Find the steady state solution. Explain your results.

d)  Now, suppose that the government increases the pension payment for retirees to Ψ = 40%.

Study the long run e ects of the pension reform on the economy (Steady state analysis). Explain your results. Solve for the transition paths.

Remark 1 A simpple version of an OLG model was developed by Australian  Treasury for scal policy analysis (OLG Model of Australian economy - OLGA) .

2   Problem 2: NGM model with fiscal policy (Treasury's Industry Model - TIM)

We consider a NG model lled with a representative household, a representative  firm and a government. In this model the government taxes private consumption, capital and labor income to nance an exogenous sequenes of lump-sum transfers.

Time is discrete (t = 0, 1, ...).

Preferences. The representative household lives in nitely and has the following preference:

(1)

where β is a time discount factor, ct  is consumption and lt  is leisure. A typical functional form is usually used in the literature

with σ ≥ 0 and 0 < γ ≤ 1.

Technology. There is a representative rm which has access to the following CRS technol- ogy:

(2)

where, At  is the total factor productivity, kt  is capital input and nt  is labor input. The repre- sentative rm rents inputs in competitive markets.

The law of motion for capital is

kt+1 = (1 - δ)kt + it ,

where it  is investment and capital depreciates at a constant rate δ .

Government. The government collects tax revenue to  nance a government spending program, Gt. There are two taxes: consumption tax (τc ), income tax (τI). The government budget constraint is given by

(3)

where qt   is net rental rate, wt  is market wage rate, qtkt  is capital income and wtnt  is labor income. In the model, we assume that the government spend all revenues on a public transfer program. Technically, the government gives Gt back to household in terms of lump-sum transfer, Tt = Gt.

Household problem. The agent is given capital k0  initially and one unit of time in each period. The agent can invest in capital market. The labor supply is nt = 1 - l1 . The houshold lifetime budget constraint is

where ct  and it  are consumption and investment; qt  is net rental rate; and wt  is wage rate; τt(c) and τt(I) are taxes on consumption, capital income and labor income, respectively. The household chooses a sequence of consumption, savings and labor supply to maximize its lifetime utility (1) subjected to the budget constraint (4).

a)  Solution method: Assume that β = 0.99, γ = 0.3, σ = 2, A = 1, α = 0.33, δ = 0.025, and τt(c)  = 10%  and τt(I)  = 15%. Assume the economy is in steady state. Solve the model numerically and report the steady state solution.

b)  Calibration: Keep other parameter values unchanged and nd the value of β that is able to generate a capital-output ratio of Y/K = 3.

c)  Analysis 1: We can use the model to analyse the e ects of negative technology shock. Suppose that there is a permanent decrease in TFP to A  =  0.95.Analyse the e ects on output, capital, consumption, employment and welfare in long run and during the transition. Explain your results.

d)  Analysis 2: We can use the model to analyse the personal income tax cuts to respond to the negative TFP shock in c). To do so we assume the government decreases the income tax rate to τI  = 10% after the negative TFP shock. Analyse the e ects on output, capital, consumption, employment and welfare in long run and during the transition. To what extent the tax reform could mitigate the adverse e ects of the negative TFP shock.

Remark 2 A simple version of this NG model was recently developed by Australian  Treasury to study the effects of industry policy  (Treasury's Industry Model -  TIM) .





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图