代做COMP5318/COMP4318 Machine Learning and Data Mining Week 2代做Python语言

COMP5318/COMP4318 Machine Learning and Data Mining

s1 2025

Week 2 Tutorial exercises

K-Nearest Neighbor. Rule-based classifiers: PRISM

Welcome to your first COMP5318/COMP4318 tutorial! Please note the following:

For most of the weeks there will be 2 documents with tutorial exercises:

1) theoretical (as this one), involving paper-based exercises and calculations, testing your understanding of the algorithms

2) practical using Python and its machine learning and neural network libraries (available in 2 formats: ipynb (Jupyter Notebook) and pdf - see Canvas)

Theoretical: We will do some of these exercises at the lecture (usually the first exercise). The rest should be done at your own time. Make sure that you do all theoretical exercises as they are similar in style. to the exam questions.

Practical: This will be the main focus of the tutorial. Sometimes it may not be possible to finish all Python exercises during the tutorial. Please do this at home as this part is important for your assignments. We have prepared very detailed notes for the practical part, we hope you will find them useful.

The solutions for both type of exercises will be provided on Thursday evening after the last tutorial.

Exercise 1. Nearest Neighbor (to do in class)

The dataset below consists of 4 examples described with 3 numeric features (a1, a2 and a3); the class has 2 values: yes and no.

What will be the prediction of 1-Nearest Neighbor (1-NN) and 3-Nearest Neighbor (3-NN) with Euclidian distance for the following new example: a1=2, a2=4, a3=2?

Assume that all attributes are measured on the same scale - no need for normalization.

a1

a2

a3

class

1

1

3

1

yes

2

3

5

2

yes

3

3

2

2

no

4

5

2

3

no

Exercise adapted from M. Kubat, Introduction to Machine Learning, Springer, 2017

Exercise 2. Nearest neighbor with nominal features (to do at your own time)

Consider the iPhone dataset given below. There are 4 nominal attributes (age, income, student, and credit_rating) and the class is buys_iPhone with 2 values: yes and no.

What would be the prediction of 1-NN and 3-NN for the following new example:

age<=30, income=medium, student=yes, credit-rating=fair

If there are ties, make random selection.

Tip: As the examples are described with nominal attributes, when calculating the distance use the

following rule:

difference=1 between 2 values that are not the same

difference=0 between 2 values that are the same

e.g. D(1, new)=sqrt(0+1+1+0=)=sqrt(2)

age

income

student

credit rating

buy iPhone

1

<=30

high

no

fair

no

2

<=30

high

no

excellent

no

3

[31,40]

high

no

fair

yes

4

>40

medium

no

fair

yes

5

>40

low

yes

excellent

no

6

[31,40]

low

yes

excellent

yes

7

<=30

medium

no

fair

no

8

[31,40]

medium

no

excellent

yes

9

>40

medium

no

excellent

no

Dataset adapted from J. Han and M. Kamber, Data Mining, Concepts and Techniques, Morgan Kaufmann.

Exercise 3. PRISM (to do at your own time)

Given the training data in the table below, generate the PRISM rules for class=no. In case of ties, make random selection.

Weather data with nominal attributes:

outlook

temperature

humidity

windy

play

1.

sunny

hot

high

false

no

2.

sunny

hot

high

true

no

3.

overcast

hot

high

false

yes

4.

rainy

mild

high

false

yes

5.

rainy

cool

normal

false

yes

6.

rainy

cool

normal

true

no

7.

overcast

cool

normal

true

yes

8.

sunny

cool

high

false

no

9.

sunny

mild

normal

false

yes

10.

rainy

cool

normal

false

yes

11.

sunny

mild

normal

true

yes

12.

overcast

mild

high

true

yes

13.

overcast

hot

normal

false

yes

14.

rainy

mild

high

true

no



热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图