代做BENV0151 Energy and Environmental Systems Challenges帮做R编程

Module: BENV0151 Energy and Environmental Systems Fundamentals Sustainable Built Environments, Energy and Resources BSc/MEng

SECTION A: CORE ASSESSMENT DETAILS

Coursework Title:

Energy and Environmental Systems Challenges

Weighting:

100% of your marks for this module

Enquiries:

[email protected]. Please ensure you include your name, Student ID, and the Module Code in any email

Coursework Issued:

23/01/2025

Expected Workload:

30 hours

Deadline:

11:00am, 25/04/2025

Word Limit:

3000

Page Limit:

N/A

SECTION B: COURSEWORK INFORMATION

Coursework Brief:

For this coursework, you are requested to solve 5 problems  that  involve  applying  the developed knowledge into practice, focusing on the balance between energy demand and generation in (building) systems [Module Learning Objective #3]. The problems are set at different scales, ranging from simple architectural and service elements to whole buildings, so you will have to identify the corresponding challenges to meet specific energy and environmental performances [Module Learning Objective #2]. For each problem, you will be asked to include a brief discussion section, where you will have the opportunity to express your understanding of the interaction at play in each problem between the building/element, the “human factor”, and the context [Module Learning Objective #1].

For each of the problems listed, please develop your response using the following seven-step problem-solving approach.  Each  “step”  should be a corresponding  sub-heading of your response to all the 5 problems to solve.

The use of calculators or spreadsheets is allowed for this coursework.

Step 1: Problem Statement

In your own words, briefly state the problem, the key information given, and the quantities to be found. This is to make sure that you understand the problem and the objectives before you attempt to solve the problem.

Step 2: Schematic

Draw a sketch of the physical system involved and list the relevant information on the figure. The sketch does not have to be something elaborate, but it should resemble the actual system and show the key features (you can either use a graphic editor to generate it, or sketch it by hand, scan it, and copy-paste it into the document). Indicate any energy and mass interactions with the surroundings. Listing the given information on the sketch helps one to see the entire problem at once.

Step 3: Assumptions and Approximations

State any appropriate assumptions and approximations  made to simplify the  problem to make  it  possible to obtain a solution. Justify the questionable assumptions.  Assume reasonable values for missing quantities that are necessary.

Step 4: Physical Laws

Apply all the relevant basic physical laws and principles and reduce them to their simplest form by utilizing the assumptions made.

Step 5: Properties

Determine the unknown properties necessary to solve the problem from property relations or  tables.  List  the  properties  separately,  and  indicate  their  source  (i.e.,  references  in  a bibliography section), if applicable.

Step 6: Calculations

Substitute the known quantities into the simplified relations and perform. the calculations to determine the unknowns. Pay particular attention to the units and unit cancellations and remember that a dimensional quantity without a unit is meaningless. Also, don’t give a false implication of high precision by copying all the digits from the calculator—round the results to an appropriate number of significant digits.

Step 7: Reasoning, Verification, and Discussion

Check to make sure that the results obtained are reasonable and  intuitive and verify the validity of the assumptions. This is your chance discuss your understanding of the interaction at play in the given problem between the building/element, the “human factor”, and the context. This section may include references to literature, which you can report in the Bibliography.

The coursework should include a general Bibliography section at the end of the document (Harvard style. for references is required for cited literature), covering all sources used in the compilation of this coursework (e.g.,   tables  for  values/coefficients,  scientific   papers mentioned in the different discussion sections of each problem, etc.).

***PROBLEMS TO BE SOLVED***

Problem #1

A warehouse in London has a floor area of 200 m2 and an average height of 5 m.  The mechanical ventilation system guarantees a ventilation rate of 0.36 ACH. Determine the heat transfer rate associated with ventilation, knowing that there is a 10-degree Celsius difference between the temperatures inside and outside of the warehouse.  Assuming  that  the ventilation system is in operation for  10  hours a day, and that the heat loss needs to be compensated for by means of an electric heater, determine its weekly cost if the electricity price in that area is £0.061/kWh.

Discuss:

•   What  kind  of  activities  and  occupancy  level  would   be  acceptable  for  the  given ventilation rate? Why?

•   What are the sustainability implications of compensating heat losses via the proposed approach?

Problem #2

Consider a 3-m-high, 6-m-wide, and 0.3-m-thick wall made of exposed bricks. On a certain day, the temperatures of the inner and the outer surfaces of the wall are measured to be 16°C and 2°C, respectively. Determine the rate of heat loss through the wall on that day.

After that, assume you apply on the bricks wall a 10-cm-thick layer of rock wool insulation and a 2-cm-thick layer of plaster: these two materials have a thermal conductivity of λ = 0.05 and λ = 0.4, respectively. Determine the U-value (air-to-air) for this newly built multi-layer wall and the new rate of heat loss through the wall under the same temperature conditions. Discuss:

•   After applying the new materials, is the performance of the wall under consideration adequate for a residential building in England? Why?

•    How is sustainability related to adequate insulation in buildings? How does insulation impact energy consumption in buildings?

Problem #3

A fixed aluminium-framed window with glass glazing is being considered for an opening that is 1.2 m high and 1.8 m wide in the wall of a house that is maintained at 22°C. Determine the rate of heat loss through the window when the outdoor air temperature is 10°C, if the window is selected to be: (a) 3-mm single glazing, or (b) double glazing with an airspace of 12 mm.

Assuming now that outdoor there is a wind speed of 3 m/s, and the consequent convective heat transfer  rate  is  160  W,  determine  the  surface  temperature  of  the  external  glazing, knowing that the outdoor temperature of (undisturbed) air is still 10°C.

Discuss:

•    How are the two glazing scenarios different in terms of performance?

•    How do such different glazing options impact sustainability,  by considering energy efficiency and occupants’ comfort?

•   What are the implications for thermal bridges if a material other than aluminium was selected for the window frame?

The dimensions of a concrete wall of a building located in Rome (Italy) are 5*4 m. It has a surface temperature of 24°C. Calculate the radiative heat transfer from the wall to the outdoor environment in a typical day of January. Furthermore, knowing that the building is a rectangular prism with four such walls with a U-value of 2.0 W/m²·K, that the building has a square  floor  plan  of 25 m2,  and  floor  and  roof  have  U-values of 1.0 and 0.7 W/m²·K respectively, then calculate an approximation of the buiIding’s heat transfer coefficient.

Discuss:

•    How would the radiative heat transfer value change if a typical day in April was taken as a reference, instead of January?

•    For  radiative  heat transfer,  discuss the  implications of using materials other than concrete in world regions with different climates 一 include a city of your choice (e.g., your hometown, or a city you would like to visit) as an example.

Problem #5

A UCL cafeteria (V = 400 m3) that normally hosts 35 students from the SBEER Programme during their breaks is to be air-conditioned with window air-conditioning units of 5 kW cooling capacity each. A student at rest may be assumed to dissipate heat at a rate of 360 kJ/h. The lighting system in the room consists of 20 lightbulbs, each providing a radiative heat transfer of 100 W. The rate of heat transfer to the classroom through the walls and the windows on a summer day is estimated to be 15,000 kJ/h. If the room air is to be maintained at a constant temperature of 21°C, determine the minimum number of window air-conditioning units required.

Discuss:

•    Assuming the classroom had extra seats capacity, how would the increasing number of students affect the need for additional air-conditioning units?

•    What is the impact on sustainability of the need for additional air-conditioning units, under different configurations of energy supply from the grid?

•    Based  on the  content you  have been taught in the lighting session, consider how different types of bulbs may achieve similar brightness in lumens.

•    Considering that an average reverberation time of 0.5 s has been measured in the cafeteria, discuss what residual acoustical capacity the space may still have and how this could be increased.






热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图