代写MA 575 – Fall 2022. Midterm Exam代做Java程序

MA 575 – Fall 2022. Midterm Exam

Some useful formulas

• The Gaussian distribution If X ∼ N(µ, σ2), we have E(X) = µ, Var(X) = σ2.

• If X = (X1, . . . , Xp)′ ∼ Np(µ, Σ), and A ∈ R k×p , for some k ≥ 1, then AX ∼ N(Aµ, AΣA′).

• In a simple linear regression model yi = β0 + β1xi + ϵi , 1 ≤ i ≤ n, where the errors are independent, and have mean zero and variance σ2, the estimates of β0, β1 and σ2 are given respectively by

where ˆyi = ˆβ0 + ˆβ1xi , and where as usual denote the true values of the parameters, we have

Furthermore the R2 of the model is

Problem 1: Consider the multiple linear regression model y = Xβ + ϵ, where ϵ is modeled as having the distribution N(0, σ2 In). Suppose that we fit the model to a dataset and obtain the following summary in R.

Call:

lm(formula = y ˜ X1 + X2 + X3 + X4, data = dataset)

Residuals:

Min 1Q Median 3Q Max

-90.531 -20.855 -1.746 15.979 66.571

Coefficients:

Estimate Std. Error t value Pr(>|t|)

(Intercept) 1045.9715 52.8698 19.784 < 2e-16 ***

X1 4.4626 10.5465 0.423 0.674

X2 1.6379 2.3872 0.686 0.496

X3 -3.6242 3.2154 -1.127 0.266

X4 -2.9045 0.2313 -12.559 2.61e-16 ***

---

Signif. codes: 0 ’***’ 0.001 ’**’ 0.01 ’*’ 0.05 ’.’ 0.1 ’ ’ 1

Residual standard error: 32.7 on 52 degrees of freedom

Multiple R-squared: 0.8246,Adjusted R-squared: 0.809

F-statistic: 52.88 on 4 and 52 DF, p-value: < 2.2e-16

(a) (2pts) What does the column ’Estimate’ represent? How is it computed?

(b) (2pts) What does the column ’Std. Error’ represent? How is it computed?

(c) (2pts) What does the column ’t value’ represent? How is it computed?

(d) (2pts) What does the column P r(|t| >) represent? How is it computed?

(e) (2pts) What does the F-statistic represent? How is it computed?

Problem 2: Consider a simple linear regression model yi = β0 +β1xi +ϵi , for i = 1, . . . , n, where the error terms ϵi’s are assumed independent and identically distributed with distribution N(0, σ2 ). Let ˆβ0, ˆβ1 denote the least squares estimators of β0 and β1 respectively, and let σˆ 2 be the usual linear model estimator of σ2. See formulas on page 1. Answer TRUE or FALSE, and explain your choice if asked.

(a) (2pts) The fitted regression line x 7→ ˆβ0 + ˆβ1x always goes through the point (¯x, ¯y). Explain.

(b) (2pts) The estimators (ˆβ0, ˆβ1) and ˆσ2 are always independent.

(c) (2pts) The vector of residuals of the model is always orthogonal to the vector of fitted values. Explain.

(d) (2pts) The T distribution with ν degree of freedom is obtained by dividing a standard normal random variable by the square root of a random variable that follows a chi-square distribution with ν degree of freedom.

(e) (2pts) The R2 of the model equals to one means that the linear model is the best possible regression model for the data.

Problem 3: Consider the simple linear regression model yi = βxi + ϵi , 1 ≤ i ≤ n, where the error terms ϵi’s are assumed iid with distribution N(0, σ2). The true values of β, σ2 are denoted respectively β⋆, and σ⋆2.

(a) (3pts) Suppose that we combine all the n observations together to write the model in a matrix form. as y = Xβ + ϵ, where y = (y1, . . . , yn)′. What is X, β and ϵ? Deduce the expression of the least squares estimate ˆβ of β.

(b) (2pts) Find an estimator for σ2.


(b) (5pts) The residual sum of squares of the model can be written as as

Use this to show that


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图