代做Assignment 5代做迭代

Assignment 5

1. For each of the following derivations, provide the justifications for each line of the derivation.

(a) For any formulas ϕ and ψ, we have {¬ϕ} (ϕ → ψ).

(1) ((¬ψ → ¬ϕ) → (ϕ → ψ))

(2) (¬ϕ → (¬ψ → ¬ϕ))

(3) ¬ϕ

(4) (¬ψ → ¬ϕ)

(5) (ϕ → ψ)

(b) For any formulas ϕ and ψ, we have (¬ψ → (ψ → ϕ)).

(1) (¬ψ → (¬ϕ → ¬ψ))

(2) ((¬ϕ → ¬ψ) → (ψ → ϕ))

(3) (((¬ϕ → ¬ψ) → (ψ → ϕ)) → (¬ψ → ((¬ϕ → ¬ψ) → (ψ → ϕ))))

(4) (¬ψ → ((¬ϕ → ¬ψ) → (ψ → ϕ)))

(5) ((¬ψ → ((¬ϕ → ¬ψ) → (ψ → ϕ))) → ((¬ψ → (¬ϕ → ¬ψ)) → (¬ψ → (ψ → ϕ))))

(6) ((¬ψ → (¬ϕ → ¬ψ)) → (¬ψ → (ψ → ϕ)))

(7) (¬ψ → (ψ → ϕ))

2. Determine whether each of the following proposed proof systems are sound. Justify your answers.

(a) Axioms: All formulas.

Rules: None.

(b) Axioms: All formulas of the form. (ϕ → ϕ).

Rules: Hypothetical Syllogism.

(c) Axioms: All formulas of the form. (ϕ → ψ).

Rules: Modus Ponens.

(d) Axioms: All tautologies.

Rules: From any ϕ that is not a tautology, infer any formula.

3. For each of the following, show that the formula is derivable from the set as indicated. You may use anything proved in the Week 5 Slides, such as the Deduction Theorem and Hypothetical Syllogism, and anything occurring earlier in this assignment or question. You may not use the Completeness Theorem.

(a) For any formulas ϕ, ψ and γ,

{ψ,(ϕ → (ψ → γ))} (ϕ → γ).

(b) For any formulas ϕ, ψ and γ,

{(ϕ → (ψ → γ))} (ψ → (ϕ → γ)).

(c) For propositional variables P, Q and R,

{(P → Q),(¬R → ¬Q)} (P → R).

4. Let P, Q and R be propositional variables. Is it the case that

{((P → Q) → R)} (P → R) ? Justify your answer.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图