代写Sensing, Control and Automation代做留学生Matlab程序

Sensing, Control and Automation

Lab 1: Motor Modelling and Open vs Closed Loop Analysis

Introduction:

Simulink is the graphical front end for Matlab, and enables block schematic representations ofa variety of systems to be produced and analysed. Block diagram representations of control systems are a particularly important capability, and provide a direct link to the principal representation method being studied in lectures.

Some basic guidance can be found in the document “Matlab/Simulink – Getting Started on Control Analysis” handed-out with this assignment. However once you have understood the use of libraries and the elements they contain, Simulink is simple and intuitive to use.  The document also explains how to transfer results from Simulink into the Matlab workspace, which can help to create comparative graphs from different simulations.

You will be modelling a motor and carrying out various open and closed-loop simulations. The motor parameters representing a real DC motor driving a small load are as follows:

Back emf constant      Kv = 0.024 V/rad s-1

Torque constant          Kt = 0.024 Nm/A

Inertia (motor + load) J = 1.1x10-5 kg m2

Armature resistance    R = 4 Ω

Armature inductance  L = 0.01 H

Friction coefficient     Kf = 2.5x10-5 Nm/rad s-1

Exercise Aims:

1)  To gain familiarity in modelling and simulating systems using Matlab/Simulink

2)  To compare the usefulness of open-loop and closed-loop control for a DC motor.

How to work:

Work either individually or in pairs and keep rough notes for your own future reference in your notebook.

The Tasks to be undertaken

There are six distinct tasks, and it may be sensible to have separate file names for each task so that you can keep track of your work. The first four are considered essential. Tasks 5 and 6 are optional depending on time.

Deliverables:

The results will be discussed during the exercise. A brief feedback session will be done at the end of the exercise.

Task 1.            Development and validation of DC motor model

1.1       Based upon the block diagram of the DC motor which was discussed in lectures, create a Simulink model with armature voltage as the input and angular velocity as the output.

To create this model in Simulink, you will need to use a Sum block, a number of Gain blocks and an Integrator. You can either directly assign values to the gain blocks corresponding to the motor parameters, or you can enter them symbolically in Simulink (e.g. R for the armature resistance, Kt for the torque constant, etc.) assigns values to the parameters from a Matlab m-file. We recommend the latter, in which case you need to run this m-file (from the

Matlab command line) before doing anything with the model. Make sure that you save the Simulink model with an appropriate filename.

1.2       Test that your model is correct by applying a step input of 1V at t = 1 second

and simulate for 2 seconds. Check that the output is what you would expect.

Task 2.            Open-loop velocity response

2.1       Calculate or work out the gain (G0) to be applied (as an open-loop controller) in order to give a steady-state speed which follows the command speed.

2.2       Apply this gain (G0) and set the command step input to 100rads-1. Simulate it and verify that the velocity reaches the correct steady-state.  Note that if you apply the step after (say) 0.5 second it will be easier to see the response.  (If you have incorrectly worked out what gain to apply it will not of course give a response tending towards 100rads-1, so this provides a useful check.). Make a note of the rise time2.

2.3       Increase the friction level Kf by 100% and run the simulation again.  This should change the response of the system

- Note the steady state value and the new rise time

- By what percentage has the steady state changed?

Task 3             Closed-loop velocity control

(Now set your system parameters back to the default.)

3.1       Modify your model to create a closed-loop system, setting the proportional control gain (G) to an initial value of 0.1 V/rads-1.

3.2       Simulate the response for a step input of 100 rads-1  and observe how it changes as you decrease/increase the control gain (G).

3.3       Select a suitable gain (G) to achieve smaller steady-state error, faster response, but voltage applied must be less than 50V at its peak.

Note the steady state value and the rise time

3.4      Now change the value of the motor friction similar to task 2.3.

Note the steady state value and the new rise time

By what percentage has the steady state changed?

What have we discovered so far?

You have considered open-loop and closed-loop control of the motor. You should have noticed that:

1) The transient response is much shorter in closed-loop than open-loop.

2) There is a steady-state error in closed-loop - it can be made smaller by increasing the gain (but will never be zero with just proportional control).

3) There is no steady-state error from the open-loop control when the parameters are known perfectly

4) The effect on the transient & steady-state response of uncertainty (changes in

system parameters such as friction) is less in the closed than the open-loop.

Task 4: Effect of a disturbance (e.g. an applied external torque).

(Set your system parameters back to the default.)

4.1      Modify block diagram of the motor model to allow a disturbance torque to be applied.

4.2       Copy the motor model so you can implement the open and closed loop models alongside one another.

4.3      Put in a command step of 100 rad/s at t=0 seconds and a disturbance torque  step of amplitude 0.02Nm (this may sound small - but the motor is small and it is around 10% of the motors load capacity).

4.4      Run the simulation. How do the open-loop and closed-loop strategies compare with external loads applied?

What did you see?

The closed loop control overcomes the effect of disturbance far better than the open- loop control scheme.

Additional Tasks Time Permitting

Task 5

Add an integral action to the closed loop (to give a PI controller) and see what effect  it has on the steady state error (the integral gain must not be too large if the system is to be stable - so it may need some trial and error tuning).

Task 6

Try using EITHER the frequency design method demonstrated in the lectures OR a method you have been taught in previous studies to design the P+I controller for motor speed control.


 


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图