代做Case Study 4 - BU618 Pt 2代做留学生Matlab编程

Case Study 4 - BU618 Pt 2

Problem Statement

Ethnic diversity is a vital driver of innovation, better decision-making, and enhanced customer understanding, particularly in diverse markets (Kandola & Fullerton, 1994). However, achieving equitable representation of underrepresented groups (UGs) across all organizational functions, particularly in industries with historically low diversity, remains a challenge.  In the financial services sector, understanding how UGs are distributed across functions is critical to identifying barriers and developing strategies to improve diversity.

This analysis focuses on UG representation in two key functions within a large financial organization:  Sales and Professional Services.  Specifically, we aim to test whether significant differences in UG representation exist between these two functions. Additionally, we explore how other factors—such as team location (London or not), group size, the number of female team leads, and the proportion of male employees—may influence UG representation.

By investigating these factors through an independent t-test and multiple linear regression, this study seeks to identify potential systemic barriers that may prevent UGs from being equitably represented across all functions.   The results will inform targeted diversity and inclusion  (D&I) initiatives designed to foster a more inclusive workforce in line with commercial goals and employee engagement objectives.

Data Description

The dataset includes 29,976 employees across 928 teams in the UK, aggregated from an employee engagement survey.  The primary variables are:

•  Function:  Sales or Professional Service

•  UG Representation:  Proportion of underrepresented groups in each team

Ethnicity data was collected voluntarily, and only teams with 10+ employees are included for anonymity.  An independent t-test will assess differences in UG representation between functions, and a multiple regression will explore additional influencing factors.

Methods of Analysis

To examine whether there is a significant difference in the proportion of UGs between the Sales and Profes- sional Service functions, two primary statistical tests were used:  Levene’s test for homogeneity of variances and an independent t-test.

Levene’s Test for Homogeneity of Variance

Levene’s test was applied to assess whether the variances in UG representation across the two functions were equal.  This step ensures the validity of the independent t-test’s assumptions regarding equal variances.

Independent Samples t-Test

An independent t-test was conducted to compare the proportion of male employees—used here as a proxy for UG absence—between the Sales and Professional Service functions.  Despite Levene’s test indicating unequal variances between the groups, the t-test was performed assuming equal variances due to the robustness of the test with large sample sizes.  The null hypothesis posited no significant difference in UG representation between the two functions.

Multiple Linear Regression

To further explore the factors influencing UG representation, a multiple linear regression model was fitted. This model included five predictors: team location (London or not), function (Sales or Professional Services), group size, the number of female team leads, and the percentage of male employees in the team.  The aim was to assess how these factors interact to affect UG representation and to identify any additional disparities that might exist beyond functional differences.

Key Results

The results of Levene’s test indicated a significant difference in variances between the two functions  (F(1, 925) = 30.99, p < .001), suggesting that the variances are not equal.  However, the independent t-test was conducted assuming equal variances, given the large sample size.   The t-test revealed a highly significant difference in UG representation between the Sales and Professional Service functions (t(925) = 22.89, p < .001).   Specifically, the proportion of male employees was significantly higher in the Sales function  (M = 71.26) compared to the Professional Service function (M = 44.40).  The 95% confidence interval for the mean difference ranged from 24.56 to 29.16, confirming a substantial disparity in UG representation between the two groups.

The multiple linear regression analysis further highlighted that both team location and function significantly impacted  UG  representation,  with the  overall  model  explaining  17.4%  of the variance  in  UG  prevalence (Adjusted R² = 0.168, F(5, 724) = 30.49, p < .001).  Key findings include:

•  Team Location (London or Not):  Teams based outside of London had significantly lower UG represen- tation compared to those based inside London (B = -0.085,   = -0.36, p < .001).

•  Function: Professional Service teams exhibited higher UG representation than Sales teams (B = 0.038, = 0.17, p < .001).

Other factors, such as group size, the number of female team leads, and the percentage of male employees, did not significantly contribute to UG representation (all p > .05).

Interpretation and Conclusion

The findings reveal a significant difference in UG representation between the Sales and Professional Service functions, with Sales teams showing a higher male proportion and lower UG representation.  This suggests that UGs are underrepresented in customer-facing, higher-paid Sales roles compared to non-customer-facing Professional Service roles.  The analysis also indicates that teams outside London have notably lower UG rep- resentation than London-based teams, which may highlight geographic disparities in recruitment or retention practices.

These findings point to the need for targeted D&I strategies that address both functional and geographic disparities in UG representation.  Specifically, the organization may need to examine recruitment practices, particularly in areas outside London and in customer-facing roles, to ensure more equitable representation of UGs across all areas.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图