代做MEC09722 Energy System Design代写C/C++语言

Module Code(s) MEC09722, Module Title: Energy System Design

Coursework – Ground Source Heat Pump - Ground Loop Design and Performance Analysis

Learning Outcomes Covered:

LO2-LO5

Assessment Type:

Report

Overall module assessment

40% coursework, 60% Exam

For this assessment:

40%

Assessment Limits:

2000 (words/minutes/sheets)

Submission Deadline:

30th of June 2025

Submission Method:

Via Moodle

Turnitin on submissions:

Unlimited Attempts. After 3 submissions reports generate after 24 hours.

Return of work and feedback:

Feedback on submissions will normally be

provided within three working weeks from the submission date.

Notes:

   You are advised to keep a copy of your submitted assessment.

    Please read and follow the ‘Fit-to-Sit’ guidanceif you need to request an

extension

Assessment regulations and academic integrity

The University rules on Academic Integrity apply to all submissions. The student academic integrity regulationscontain a detailed definition of academic integrity

breaches.

   You cannot knowingly permit another student to copy all or part of your work.

•   You must not share your work with other students. This includes posting any of your work in any repository that is accessible to others (such as GitHub) and applies also after you have completed the course.

•   Asking coursework-related questions in external online forums (such as Stackoverflow) is NOT permitted.

By submitting the report, you are confirming that:

•    It is your own work except where explicit reference is made to the contribution of others.

•    It has not been submitted for any module, programme or degree at Edinburgh Napier University or any other institution.

•    If you have made use of generative Artificial Intelligence (AI) tools, you have done so only as allowed for this assessment, and have provided the relevant details in the coursework declaration.

1.0    Academic Regulations

(a)      Academic skills support: In advance of submission, you can access the support of the academic skills team. They can help you with any aspect of the assessment that you might struggle with, that is not content related. For example, they can help with time-management, effective reading and note-making, and any aspect of academic writing that you might struggle with. This support is provided through workshops and individual appointments which are bookable online via MyNapier:

Improve your Academic & Study Skills (napier.ac.uk). You can also directly email the Academic Skills Adviser, Hannah Awcock, h.awcock@napier.ac.uk for any specific academic skills support you require.

(b) Use of generative AI: [If not covered elsewhere, eg a Moodle Quiz]. Please include the following declaration on the first page of your submitted coursework:

2.0    COURSEWORK SPECIFICATION

Ground Source Heat Pump - Ground Loop Design and Performance Analysis:

Considering yourself as a thermal engineering consultant, you have been approached by a prospective client asking for a feasibility study on the potential for installing a ground source heat pump to heat a property in Southern Scotland. The house is a modern eco-home, and the client has some knowledge of the site and background information on likely costs and is keen to see if it is worthwhile proceeding with the project.

The house is a single story storey structure, 15m long and 12m wide, The floor to ceiling height is 3m. The house has 6 large windows (1.2x1.5m) facing south, 4 east/west (1.2x1m) and 2 facing north (same size as E/W, but no significant solar gains at this location). the building is typically occupied by 4 people with 5kWh/day/person of casual gains via cooking, TV, PC and other related activities. Also assume 6 lights on at any one time and 75 watts of casual gains per person. The effective ventilation rate is 8m3/hr/m2 .

The U values are as follows: Ufloor  = 0.25 W/m2K, Windows are double glazed 1.7 W/m2K, two doors UDoor  (1.5m2 each) = 0.6 W/m2K, URoof  = 0.24 W/m2K. The walls consist of 300mm of solid brick (1.125 w/mK), with an external coating of lime render 25mm thick (0.5 W/mK). Inside of the brick there is an airgap of 10mm (0.23 W/mK conductivity) onto which 100mm of sheep’s wool insulation (k = 0.035 W/mK) has been placed, which is then sealed by 20mm of plasterboard (k = 0.16 W/mK) on the inside.    The degree days per month and the solar gain factors are given below (northerly solar  gains are considered to be negligible), as well as the solar availability to the ground area under which the GSHP will be placed:

Month

Degree Days

SGf South

SGf East/West

Ground

J (31 days)

430

0.40

0.09

0.036

F (28 days)

395

0.60

0.24

0.115

M (31 days)

342

0.94

0.52

0.192

A (30 days)

332

1.26

0.66

0.47

M (31 days)

230

1.39

0.80

0.74

J (30 days)

118

1.39

0.90

0.87

J (31 days)

66

1.52

0.73

0.71

A (31 days)

116

1.19

0.62

0.54

S (30 days)

131

1.06

0.47

0.37

O (31 days)

242

0.80

0.28

0.25

N (30 days)

361

0.46

0.14

0.087

D (31 days)

445

0.36

0.07

0.046

Total

3208

 

 

 

Note Qgain for solar = SGf x days of the month x area = kWh/month

Based on the data above you should able to make an estimate for the monthly heat requirements and thus estimate the heat input required per month for the house. Note that the above values only covering heating. Hot water demand will be approximately  2kWh’s per person per day.

It is planned to locate the GSHP under the front garden of the house, with soil details as below:

Dimensions:  = 14 m long x 14 m wide

Soil type: clay, properties:

k =0.9 W/m.K ρ = 1620 kg/m3 , Cp=1.25 kJ/kg.K

From previous installations experience, you are considering using a vertical slinky of radius 1m, with 1m overlap, in trenches spaced 2 m apart, with the top of the coil 1m below ground level. The initial pipe for consideration is polypropylene, with a manufacturer’s specified thermal conductivity of 0.45 W/m.K. The internal surface roughness is 3 x 10-6  m, and the internal diameter and wall thickness are, respectively, 28 mm and 2 mm.

Considering, and clearly specifying, an appropriate fluid inlet temperature and glycol concentration, define all necessary thermophysical properties to allow a detailed analysis of the potential rate of heat absorption from the site. You may consider the application of either a 150 W, a 200 W or 250 W circulating pump (electrical rating), each with an efficiency of 83%. {Note: You may wish to start your analysis by considering a volumetric flow rate between 0.5 l/s and 0.65 l/s to determine head loss, and hydraulic output, and thence use an iterative procedure to determine a realistic flow rate that can be achieved by your chosen pump}.

Considering the rate of heat absorption for the pipe in 20 m incremental steps, determine the total rate of heat absorption that can be achieved for the site, and the fluid temperature at outlet. You may wish to consider the effect of alternative pipe dimensions on thermal performance. Clearly specify your assumed system CoP, determine the maximum rate of heat delivery to the property, and critically appraise the suitability of the system to meet the heating requirements detailed above. You may also wish to consider a “coldest day scenario” in your analysis, and the effect of heat removal on ground temperature, and hence system operational performance.

Another consideration are the economics and carbon footprint of the setup. What sort of cost benefit would such as system provide and would significantly cut back on carbon emissions. In the event of any shortfall in performance. You also might want to consider what sort of subsidies are available to support the installation of a heat pump and would this house qualify.

Another issue you might also wish to address the issue of a possible backup or supplementary heating system (or possibly modifications to the house to lower the heat demand to match supply). The homeowner is also interested in generating renewable energy on his property, which could help power the heat pump, as well as provide electricity to the home. Its worth noting that this house is off the gas grid.

Your report should include an executive summary detailing the salient points from your analysis. You should state clearly, and justify, all assumptions made. You should provide clear argument for your chosen pump, and consider both the limitations and benefits of using this type of heating system. Detailed calculations may be presented in an appendix, or in an attached spreadsheet, but should not be within the main body of text.

Based on the discussion chapter you should finish with a conclusion, which should summarise the findings of your report. It is crucial that your report is well supported by references. Ideally these should be drawn from peer reviewed academic journals as much as possible. However, given the practical nature of the report government reports, manufacturers data sheets, textbooks and course notes are acceptable alternatives.

3.0    RESOURCES

Spreadsheets on moodle, including EthGlyc-data.xls

The resources required for this assessment are contained within the taught material issued in class, namely the handouts, associated examples and tutorial work.

Additional resources will be available in text books, the internet and in particular scientific journal papers. These are best sourced using sites such as www.sciencedirect.comor “ Google Scholar” Note that you will need to be using a university based PC account to access journal papers, as many are behind a pay-wall.

4.0    REPORT FORMAT AND ASSESSMENT CRITERIA

Your report should be written following the Report Writing Guidelines that should be available in your Programme Area of Moodle and also in your Programme Handbook. Ensure that your report is written in the 3rd  person and using the past tense.

Your report will be assessed on its clarity and its technical accuracy. Standard reporting features such as an Abstract, an Introduction and Conclusion/Summary should be incorporated.

  Guide length for the report is 2000 words.

•  Title page, list of contents, abstract, headings, appendices, and references are not included in the word count.

•  Marks will be given for evidence of research and the application of this via your calculations.

•  It is important to fine tune calculations and provide justifications for any assump- tions made as well as any design decisions you make.

•  Marks will be given for the quality and depth of discussion and critical analysis.

•  You must write material which is your own. If referring to other material, you are required to provide references. If there is a lot of material from other sources; pré-   cis, or summarise it in your own words, add your own thoughts and observations. It is not acceptable to copy large pieces of information from other sources, even if   it is referenced. Any material in the report that is clearly a verbatim copy from  a reference source, or that has been generated by a chatbot, will be dis-counted. The examiners reserve the right to request a viva to verify students knowledge of the subject.

•  All research sources should be listed clearly. Where possible, references should be from quality peer reviewed sources (Journal Articles, Books, etc.)

•  The Harvard referencing conventions is recommended for acknowledging sources of material. Guidelines for the School of Engineering & the Built Environment are available via the SEBE Referencing Guidelines.

5.0    LEARNING OUTCOMES COVERED

LO2     Define energy system boundaries

LO3     Select appropriate pumps and fans for specific applications

LO4    Analyse simple heat transfer system

LO5     Design simple energy system (specify main components for a heat pump system)


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图