代做Lab 9: Real Data Analysis调试数据库编程

Lab 9: Real Data Analysis

SPSS

1. Create codebook

1.1 Simple Codebook

Simple codebook prints most of the information found in the Variable View window. It gives the names, labels, measurement levels, widths, formats, and any assigned missing values labels for every variable in the dataset. It also prints a table with the assigned value labels for categorical variables.

· File > Display Data File Information > Working File

1.2 Detailed Codebook

Detailed codebook includes all of the same information as the simple codebook, but also includes options for printing summary statistics as well. You can choose which variables are included in the codebook, and you can choose which variable properties are included in the summary. The summary information for each variable will be printed in its own table.

· Analyze > Reports > Codebook.

2. Data Manipulation

2.1 Create new variables using a function of existing variables (review previous labs)

· Transform. > Compute Variable

COMPUTE MeanScore=MEAN(satVerbal,satMath).

EXECUTE.

2.2 Record or transform. variable (review previous labs)

· Transform. > Recorded into Different Values

> select “input variable -> output variable”

> define “output name” and its “label”

> select “if” to specify the conditions under which recode will be applied

> specify the “old value” and “new value”

> “add” the rules

> click “Output variables are strings” if in need

n You can also record value based on missingness or range.

2.3 Dichotomizing the continuous variable (review previous labs)

· Transform. > Visual Binning

> make cut points > make labels

· You can also write the syntax by yourself.

* Visual Binning.

*teacherPay.

RECODE  teacherPay (MISSING=COPY) (LO THRU 32.8131654814530=1) (LO THRU 39.34939458005=2) (LO THRU

46.0055544877955=3) (LO THRU HI=4) (ELSE=SYSMIS) INTO teacherPay_group.

VARIABLE LABELS  teacherPay_group 'teacherPay (Binned)'.

FORMATS  teacherPay_group (F5.0).

VALUE LABELS  teacherPay_group 1 '<=32.81' 2 '32.81-39.35' 3 '39.35-46.01' 4 '46.01+'.

VARIABLE LEVEL  teacherPay_group (ORDINAL).

EXECUTE.

2.4 Rank cases

· Transform. > rank cases

> ‘by’ (optional): assign rank within group

> ‘assign rank 1 to’: decreasing or increasing order

A new variable of rank would be created automatically in the data. Weighting also has an influence on the result of rank.

2.5 Sort cases

· Directly right click on the variable in data view > ‘sort ascending’ or ‘sort descending’

· Data > Sort case

> sorted by (you can select multiple variables)

> select sort order for each variable

2.7 Grouping or splitting data

· Data > split file > compare group > group based on (you can group on multiple variables)

After grouping, all the analysis you do will be based on the subgroups.

Using the `state.sav` data as an example, let’s say we want to group the data based on `region_4categs`. Follow the above steps, and save your syntax:

* Group the data based on region_4categs

DATASET ACTIVATE DataSet1.

SORT CASES  BY region_4categs.

SPLIT FILE LAYERED BY region_4categs.

Then, we run regression analysis with say, SATVerbal as dependent variable and TeacherPay and PercentTaking as the covariates. Again, let’s save the syntax.

* Encoding: UTF-8.

* Group the data based on region_4categs

DATASET ACTIVATE DataSet1.

SORT CASES  BY region_4categs.

SPLIT FILE LAYERED BY region_4categs.

* Run regression analysis

DATASET ACTIVATE DataSet1.

REGRESSION

/MISSING LISTWISE

/STATISTICS COEFF OUTS R ANOVA

/CRITERIA=PIN(.05) POUT(.10)

/NOORIGIN

/DEPENDENT satVerbal

/METHOD=ENTER teacherPay percentTaking.

3. Missing Data

3.1 Listwise Exclusion

In listwise deletion a case is dropped from an analysis because it has a missing value in at least one of the specified variables. The analysis is only run on the cases which have a complete set of data.

· Data > select cases > if condition is satisfied > if… > function group: missing values > Nmiss(…) < 1

· Another way is pairwise exclusion: https://www.ibm.com/support/pages/pairwise-vs-listwise-deletion-what-are-they-and-when-should-i-use-them

3.2 Missing data imputation (Use with caution!!)

3.2.1 multiple imputation

· Analysis > Multiple imputation > pattern analysis

· Analysis > Multiple imputation > impute missing values > select variables (variables you used for imputation model) > choose the method > select constrain > output

You can now do the analysis based on the new data

3.2.2 simple imputation

Yes, you can simply impute the missing value with any specific number. For example, the mean of the corresponding variable.

Real Data Example

1. Data

NELS:88 (https://nces.ed.gov/surveys/nels88/)

2. Standing on the shoulders of giants

Ehrenberg, R. G., Goldhaber, D. D., & Brewer, D. J. (1995). Do teachers' race, gender, and ethnicity matter? Evidence from the National Educational Longitudinal Study of 1988. ILR Review, 48(3), 547-561.





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图