代做MTH416 Neural Networks and Deep Learning 2024/2025 S2代做留学生SQL语言

Final Exam of MTH416

Neural Networks and Deep Learning

MSc Data Science Program

2024/2025 S2

Learning Outcomes of MTH416

•    A. Demonstrate understanding of the basic concepts in neural networks, and construct simple neural networks to solve problems.

•    B.  Use the backpropagation algorithm, and prove basic equations in the BP algorithm.

•    C.  Perform. the learning procedures of neural networks, including weight initialization, regularization, and activation functions.

•    D. Show why neural networks can approximate any function.

•    E.  Demonstrate  understanding of vanishing gradient phenomena, and solve this issue in the training of neural networks.

•    F. Construct convolutional networks, and employ CNN to solve problems.

The Final Coursework Project

Objectives: The aim of this final coursework project is to evaluate students’ ability to deploy deep neural networks to solve practical problems, with a particular focus on image classification in computer vision.

Dataset For This Project: Please download the dataset from the box link below:

https://box.xjtlu.edu.cn/d/fc9d7a3c5489443db056/

In the folder named MTH416_Final_Project_Coursework_Dataset, you will find three sub-folders: train, val, and test. They correspond to the training, validation, and test datasets, respectively. The datasets are labelled and grouped into normal, benign, and cancer categories.

Problems:

In this project, you will build deep neural networks for cancer diagnostics using collected clinical image data. Throughout the project, you will classify image data, evaluate your models with appropriate metrics, and adjust your model based on the practical issues observed from the dataset.

Q1  [30%]: Implement a deep neural network of your choice in PyTorch for the classification of the clinical disease: normal, benign, and cancer. Techniques you might need to consider while implementing your model

•    Pre-processing of the dataset (centering, normalization, etc)

•    Data augmentation

•    Weight initialization

•    Activation functions

•    Dropout

•    Batch normalization

•    Learning  algorithms  (e.g.,  SGD  with  momentum,  Adam)  and  learning  rate tuning

•    Loss functions (e.g., hinge loss vs cross entropy)

•    Hyper-parameter tuning

Note that transfer learning from pretrained models is not allowed for Q1. Please report the model architecture, configurations, the number of learning parameters in your model, and the performance of your model on the training, validation and test datasets in terms of classification accuracy in the final report. Finally, discuss what you found and learned from solving this problem in the report as well.

Q2 [30%]: Implement a transfer learning model based on a pretrained model (e.g., pretrained ResNet-18) and fine-tune it in PyTorch for the classification of the clinical diseases: normal, benign, and cancer.

Please report the model architecture, configurations, the number of fine-tuning parameters in your transfer learning model, and the performance of the model on the training, validation and test datasets in terms of classification accuracy in the final report. Compare the performance of the transfer learning approach with the model you built in Q1. Finally, discuss what you found and learned from solving this problem in the report as well.

Q3  [20%]: The classification accuracy metrics used in Q1 and Q2 can lead to misleading conclusions about model performance when the class labels are highly imbalanced, i.e., samples of patients without cancer far exceed those with cancer in the dataset. A confusion matrix and metrics like precision and recall can provide a better understanding of model performance.

In the final report, please include the confusion matrix for Q1 and Q2. Discuss your observations from the confusion matrix and plot the precision and recall curve. Hint:

you can find more information on precision and recall here:

https://scikit-learn.org/stable/auto_examples/model_selection/plot_precision_recall.html

Q4 [20%]: The class imbalance issue in the clinical dataset can lead to problematic performance of the deep learning model.  A few possible ways to adjust model performance include re-balancing the classes in each category, such as:

1)   Reweight the loss function in the model so that each class contributes equally to the loss function;

2)   Use up-sampling or down-sampling to balance the samples in each class.

Please implement one of the ideas above into your model in Q1 or Q2 in PyTorch, choose appropriate evaluation metrics, and report your findings in the final report.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图