代做MSIN0041 – Marketing Science 2024–2025帮做R程序

Syllabus

MSIN0041 – Marketing Science

2024–2025

Introduction

Marketing professionals have long used data to guide their marketing decisions and measure  the effectiveness of marketing campaigns. Advancements in technology have brought forth  an unparalleled amount of data. Marketers need a more systematic way of analysing data, unearthing insights, and using those insights to help with business strategies.

Marketing science (also known as quantitative marketing) revolves around under- standing complex marketing dynamics to predict business outcomes and recommend strate- gic actions using quantitative research methods, often from economics and statistics. Some  major objectives of this module include the provisions of the following learning objectives:

•  A high-level understanding of the fundamental concepts in marketing

•  An exposure to the marketing problems leading companies seek to address with scientific methods, as well as the results of such efforts

•  A (controlled) practical experience with data and methods in marketing science

•  An intuitive understanding of methods in marketing science.

Logistics

Lectures are held on Tuesdays 2–5pm in Room 508 of Roberts Building. You are advised to check the UCL Timetable regularly for breaks and any unexpected changed to the schedule.

Lecture attendance is an essential part of your learning experience and required by the Programme. If you cannot attend a lecture, please inform the Programme Administrator in advance.

Lecture recordings are available through Lecturecast. Watching the recordings is optional, and lectures are prepared and delivered with the assumption of in-person attendance only. Consequently, the quality of the recordings is not guaranteed, and recordings are not a sub- stitute for lecture attendance. If you have questions about the lecture content, drop by the  regular office hours or reach out to the Module Leader for help.

Office Hours

The module leader’s office hours are held in person on Tuesdays from 1.45pm to 2.45pm in Roberts Building. You are welcome to email the module leader to make an appointment if you cannot attend the in-person office horus.

Emails

Your module leader and teaching assistants may receive a large number of emails during the teaching term. To ensure that your email is read and replied in a timely manner, please include MSIN0041 in the subject line of your email. Unless the matter is urgent, please be patient for a response.

Administrative matters such as technical issues with Moodle and extension requests  should be direct to the Programme Administrator. Sending the module leader or teaching as- sistants such emails will likely result in a delay to the resolution of your issue as the only  thing they can do is to forward your email. For academic questions, emails are only good  for brief and simple questions. More complex questions should be addressed in office hours  instead.

Reading and Software

This module has no required textbook, but there will be some individual readings and case  studies assigned. You are expected to contribute to the in-class discussions about these read- ings and case studies. If you care for additional reading, here are two recommendations by Dr Miao Wei, who has been teaching the well-regarded Marketing Analytics (MSIN0094) module for students in MSc Business Analytics. Both books are either free or available through the UCL Library Services:

• Handbook of Marketing Analytics: This book provides a good survey of analytical methods used in quantitative marketing and their high-impact real-life applications.

• Introduction for Econometrics with R: The authors intend this book to provide an interac- tive environment for the learning of econometrics with empirical applications. While the  authors have modestly stated otherwise, the book is a good introduction/refresher to both  econometrics and R.

Lecture slides will be uploaded to Moodle in two formats: HTML and PDF. The HTML format is recommended for viewing on a digital screen such as a tablet, whereas the PDF format is suitable for printing. Some topics will have supplementary materials notes, which will be uploaded alongside the slides and examinable.

R will be used for computations. You are required to (learn to) use it for your individual coursework. If you have not worked with R on a desktop before, Dr Miao has kindly prepared a step-by-step guide for you to get started with R.

AI Policy

This module allows the assistive use ofAI tools such as ChatGPT, Claude, and Gemini. You are  strongly encouraged to assist your learning with these AI tools. They are extremely helpful in  efficiently obtaining high-level understanding of many fundamental concepts in marketing  and programming. This module assumes that you are comfortable with R thanks to the Data  Analytics module series, but in case you are not, these AI tools should be very helpful in  getting you up to speed with the level of command needed for this module. A typical use of AI is to ask it to explain the codes in the lecture to you, or to ask it to help debug your codes. However, do be aware that AI tools are not a substitute for the learning of the fundamentals, and they are sometimes prone to hallucinate and provide false information. It is strictly pro- hibited to ask AI to (e.g., codes) write your coursework for you.

Assessment

Term                  Name                  Weight

1

Individual Coursework 1

5%

1

Individual Coursework 2

5%

1

Group Coursework

30%

3

Module Exam

60%

           Table 1: Assessment Components

Assessment components and their respective weights are listed in Table 1. Individual course- work puts more focus on testing your understanding of the fundamental concepts as well as  the technical details. Individual coursework is expected to be challenging and tends to involve  a fair amount of thinking and programming. Questions in the individual coursework tend to  have well-defined correct answers, but open-ended questions will also appear.

Group coursework challenges you to apply the knowledge and skills you have learned  from the module to a real-world marketing problem of your choice. You will have total con- trol over what problem you wish to solve and how you wish to solve it. You will be asked to  form a group of four to six for your group coursework. Team-building and teamwork will be essential for a successful group project, and I encourage you to be cautious and proactive in forming your team. Once you have formed your team, your team collective owns the output from your group coursework, meaning that everyone in your team will receive the same mark barring extremely exceptional circumstances.

The format of the module exam is expected to be an online controlled-condition exam.

No past exams will be provided, but a practice exam that resembles the actual exam in terms of format and difficulty level will be provided to help with your revision. Questions in the module exam tend tobe more open-ended and designed to test your high-level understanding of the fundamental concepts in marketing. There will be no programming-related questions in the module exam. Numerical questions might still appear in the module exam, but the level of complexity and difficulty will be much lower than in the individual coursework.

Important Dates

Individual Coursework 1

•  Assigned on 16 October.

•  Due on 30 October

Individual Coursework 2

•  Assigned on 13 November

•  Due on 27 November

Group Coursework

•  Team formation by 13 November

•  Group coursework report due on 13 December

Module Topics

Note that topics are not necessarily allocated the same amount of time.

Product

Keywords: Language of products, branding, A/B testing, conjoint analysis Readings:

•  Avoid the Pitfalls ofA/B Testing

•  Apple vs Samsung: The $2 Billion Case

•  Apple vs Samsung: The $2 Billion Case Epilogue

Pricing

Keywords: price elasticity, demand estimation, pricing and competition

Price Discrimination

Keywords: first-degree, second-degree, and third-degree price discrimination, bundling Reading:

•  How Targeted Ads and Dynamic Pricing Can Perpetuate Bias

Promotion

Keywords: digital advertising, attribution, targeting, causal inference Reading:

•  Rocket Fuel: Measuring the Effectiveness of Online Advertising

Segmentation, Targeting, and Positioning

Keywords: RFM, K-means, marketing campaign simulation, value Positioning Reading:

•  Market Customization: Market Segmentation, Targeting, and Positioning

•  Artea: Designing Targeting Strategies

•  Business Model Innovation at Wildfang

Customer Lifetime Value

Keywords: customer acquisition, retention, churn, discounted cash ow Reading:

•  Business Model Innovation at Wildfang

User-Generated Content

Keywords: text data, sentiment analysis, topic modelling, recommender system Reading:

•  Have Text, Will Travel: Can Airbnb Use Review Text Data to Optimize Profits?


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图