代写ECO374H1 Autoregressive (AR) Model Summer 2025代写C/C++程序

3. Autoregressive (AR) Model

ECO374H1

Department of Economics

Summer 2025

Cycles


ρt within A (or B or C of D) is positive (lag of 1 to 2 years)

ρt of Yt between A and B (or C and D) is negative (lag of 4 to 5 years)

ρt of Yt between A and D is positive (lag of 10 to 11 years)

The ACF of the Unemployed persons data changes between positive and negative, which is typical for a cycle (see code Öle 3a. AR Motivation)

Model ACF

We would like to fit on the data a time series model that can closely approximate the dynamic pattern in the data

We will show that the Autoregressive (AR) process has such ACF

Hence, an AR model component will be suitable to fit to the data and for forecasting of the series

Note the contrast with the ACF of the MA model discussed previously

AR Model

An autoregressive model of order p 1 denoted AR(p)1 is given by


where {εt} is the white noise process

We will start with AR(1) and then extend the analysis to AR(p)

For each process, we will ask three questions:



What does a time series of the given AR  process look like?

What does its ACF look like?

What is the optimal forecast?



AR(1)

For simulated data from the AR(1) process

see code file 3b. AR1 Simulation (section 1. Simulated Data)

The parameter φ is called the persistence parameter since it ináuences the "persistence" of the series

The series with φ = 0.95 stays longer above or below the unconditional mean than the series with φ = 0.4

The series with φ = 1 is extremely persistent, in fact it is non-stationary

AR(1) is stationary only for  jφj < 1



ACF and PACF

The ACF decreases exponentially towards zero, with faster decay for smaller φ

r1 ≠ 0 but rk = 0 for k > 1

For ACF and PACF of the AR(1) process see code file 3b. AR1 Simulation (section 2. ACF and PACF)

The same features as for positive φ also hold for negative φ but with alternating signs (section 3. Negative φ)



Forecast for h = 1

The optimal forecast of the AR(1) model is equal to the conditional expectation:

For the forecasting horizon h = 1,

Since Yt ∈ It,



Forecast Error for h = 1

The 1-perod ahead forecast error is

The forecast variance is


Density Forecast for h = 1

Assuming , the density forecast is




The 95% confidence interval is then



where 1.96 is the 95% critical value from the Normal distribution



Forecasts for h > 1

The optimal forecast for h > 1 is



Similarly, we can show that



Forecasts for h → 

As h ∞, the forecast converges to



which is the unconditional mean of {Yt}, and



which is the unconditional variance of {Yt}

Hence, the AR(1) model is suitable for forecasts in the short to medium term

Convergence of its forecasts to unconditional moments still indicates "short" memory of the process, albeit relatively longer than for MA(1)

Note that these results hold only for stationary AR(1) with |φ| < 1





热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图