代写ST2133 Advanced statistics: distribution theory Summer 2021代写C/C++程序

ST2133 ZA

Summer 2021 Online Assessment Instructions

ST2133 Advanced statistics: distribution theory

Friday, 28 May 2021: 15:00 - 19:00 (BST)

The assessment will be an open-book take-home online assessment within a 4-hour window. The requirements for this assessment remain the same as the closed- book exam, with an expected time/effort of 2 hours.

Candidates should answer all FOUR questions: QUESTION 1 of Section A (40 marks) and all THREE questions from Section B (60 marks in total). Candidates are strongly advised to divide their time accordingly.

You should complete this paper using pen and paper. Please use BLACK INK only.

Handwritten work then needs to be scanned, converted to PDF and then uploaded to  the VLE as ONE individual file including the coversheet. Each scanned sheet should have your candidate number written clearly in the header. Please do not write your name anywhere on your submission.

You have until 19:00 (BST) on Friday, 28 May 2021 to upload your file into the VLE submission portal. However, you are advised not to leave your submission to the last  minute.

Workings should be submitted for all questions requiring calculations. Any necessary assumptions introduced in answering a question are to be stated.

You may use any calculator for any appropriate calculations, but you may not use any computer software to obtain solutions. Credit will only be given if all workings are shown.

If you think there is any information missing or any error in any question, then you should indicate this but proceed to answer the question stating any assumptions you have made.

The assessment has been designed with a duration of 4 hours to provide a more flexible window in which to complete the assessment and to appropriately test the course learning outcomes. As an open-book exam, the expected amount of effort required to complete all questions and upload your answers during this window is no more than 2 hours. Organise your time well.

You are assured that there will be no benefit in you going beyond the expected 2 hours of effort. Your assessment has been carefully designed to help you show what you have learned in the hours allocated.

Section A

Answer all three parts of question 1 (40 marks in total)

1. (a)  The probability mass function of a random variable X is given by

pX (x) = cqx-1,   x = 2, 3, · · · .

where 0 < q < 1 and c is a constant.

i.  Find the value of c.                                                                                       [4 marks]

ii.  Find P (X > 2.5) and P (X is even). Do not leave your answer in terms of c   [5 marks]

iii.  Find the  moment generating function of X .   Do  not leave your answer in terms of c.                  [5 marks]

(b)  Let X follows the standard normal distribution.

i.  Show that the moment generating function of X is given by

MX (t) = et2/2,    t ∈ R.                       [5 marks]

ii.  State the Markov inequality for a non-negative random variable Y.   [1 mark]

iii.  Show that, for t > 0,

                      [6 marks]

(c)  In a game, a fair die is thrown independently n times.  Let X be the total number of throws showing 3 or higher.  If X ≤ 1, you lose the game.

i.  Show that

                      [4 marks]

ii.  Suppose m independent games are played. Write down the probability mass function of Y , where Y denotes the number of games lost.              [2 marks]

iii.  Now suppose that the number of games played, M, follows a Poisson distri- bution with mean μ (so the answer to part ii. is the conditional mass function of Y given M = m). Show that

[8 marks]

Section B

Answer all three questions in this section (60 marks in total)

2.  The joint probability density for the random variables X and Y is given by

(a)  Show that c = 1/(log 3 — log 2).                                                              [4 marks]

(b)  Define the transformation

i.  Show that the joint density fU,V (u, v) of U and V is given by

You should show clearly how you arrive at the region on the (u, v) plane where the density is defined.   [8 marks]

ii.  Work out the marginal density of V.                                             [2 marks]

iii.  Find

                      (Hint: You can find first)                                         [6 marks]

3.  Let X1 , X2 , . . ., be a sequence of independent and identically distributed random variables.  Let N be Poisson distributed with mean μ and is independent of the Xi’s. Define

We dene W = 0 if N = 0.

(a)  Suppose each Xi  has density

fX (x) = λe-λx,   x > 0.

Work out the moment generating function for W given N.                [4 marks]

(b)  Show that the moment generating function of W is given by

                [5 marks]

(c)  Calculate the mean and variance of W.                                                 [5 marks]

(d)  Now consider Z = NX1 . Find the mean and variance of Z.             [6 marks]

4.  A county is made up of three (mutually exclusive) communities A, B and C, with proportions of them given by the following table:

Community

A

B

C

Proportion

0.2

0.5

0.3

Given a person belonging to a certain community, the chance of that person being vaccinated is given by the following table:

Community given

A

B

C

Chance of being vaccinated

0.8

0.7

0.6

(a)  We choose a person from the county at random. What is the probability that the person is not vaccinated?   [5 marks]

(b)  We choose a person from the county at random. Find the probability that the person is in community A given the person is vaccinated.                [4 marks]

(c)  If a person is vaccinated, the probability that they eventually show symptoms is 0.1, while the probability is 0.6 for a non-vaccinated person. For a person who eventually shows symptoms, the waiting time, T ,  until the symptoms appear is exponentially distributed, with rate 1/4 if they are vaccinated (i.e. T ~ Exp(1/4)), and rate 1/2 if they are not.

i.  Given that a person eventually shows symptoms, but these symptoms have not yet appeared at time T = 2, find the probability that this person is not vaccinated.                                                                                  [6 marks]

ii.  Given symptoms are shown eventually, find the mean of T.      [5 marks]




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图