代写UA 323 Development Economics Problem Set 4代做R编程

UA 323

Development Economics

Problem Set 4

Due: April 24th

•  Remember to include your name (and the names of any collaborators) on your independently written-up solutions.

•  Submit your solutions in the format outlined in the submission guide uploaded as part of this problem set. Please note that if you do not comply with the formatting requirements , you might lose points.

•  Before answering each questions, indicate clearly which question you are answering by including the question number (e.g.

3.1, 3.2, etc)

•  Show your work. Include brief and precise explanations of intuition and derivations as appropriate.

•  You should submit both your answers and your code. You have two options: (1) Submit two separate files: one file with your answers (pdf) and one file with your code (. R file); (2) Submit a knitted document (. Rmd knitted to PDF or HTML), where both your code and answers are visible. Option (2) is the safest and rules out any issues with your code not running when grading your problem set.

This problem set if based on the paper “Credit Access, Selection, and Incentives in a Market for Asses-Collateralized Loans: Evidence from Kenya” by William Jack, Michael Kremer, Joost De Laat, and Tavneet Suri (2023). Read the paper and answer the following questions:

1.    What is the key question that the paper tries to answer? Not the practical thing they actually do, but the Big Picture question.

2.    Why is the answer to this question important for understanding how to improve credit  access  in developing countries? Make sure you discuss the trade-off between credit take-up and repayment rates.

3.    Consider the following model of investment choice. Suppose that an individual can choose between a set of possible investments. Each investment is denoted by its probability of success p. Investment p yields a return of R(p) with probability p, and 0 with probability (1-p). Denote the expected return by E(p). Additionally, there are returns from scale to the investments that depend on how much capital k is invested. So, if an individual invests k in project p, the expected returns are F(k)E(p).

3.1 What is the expected return from investment p if the individual invests k units of capital in it?

Assume that the expected return is increasing and concave: E,(p)>0 and E,,(p)<0. Suppose the investor has wealth w. If she wants to invest k, she must borrow k-w. The lender is offering interest rate r. If the borrower  doesn’t  repay,  the  lender  takes  her  deposit w.  The  borrower  chooses  investment p to maximize:

3.2  Take the first order condition, namely take the derivative of this expression with respect to p and set it equal to zero.

3.3  Does the optimal investment p increase or decrease as the interest rate r increases?

3.4  Does the optimal investment p increase or decrease as the deposit w increases?

3.5  What is the intuition for your answers to questions 3.3 and 3.4? Hint: think about the moral hazard problem in credit markets.

4.     Now consider a different model. Suppose that p is a fixed characteristic of an investor: some investors are high success (i.e. they have high p), while other are low success. The lender does not observe the p of different individuals and offers the same credit product to everyone, at interest rate r. Investors can decide whether to take up the loan or not. Assume that, if they don’t take up the loan, their payoff is equal to w (i.e. they keep their wealth). If they take up the loan, their payoff is p[F(k)p - r(k - w)] + (1 - p)0.

4.1 Investors take up the loan when the payoff from taking up the loan is greater than the payoff from not taking up the loan. Write this condition in math terms and solve the inequality in terms of p.

4.2  Does the success rate of individuals who take  up loans p increase or decrease as the interest rate r increases?

4.3  Does the success rate of individuals who take  up loans p increase or decrease as the deposit w increases? Assume that 1/p>r.

4.4  What is the intuition for your answers to questions 4.3 and 4.4? Hint: think about the adverse selection problem in credit markets.

5.     Now, refer to the paper by Jack and co-authors. Explain what strategy the paper uses to detect whether the lack of deposit or guarantors increases moral hazard.

6.     Explain what strategy the paper uses to detect whether the lack of deposit or guarantors increases adverse selection.

7.    On Brightspace, you can find a dataset called KenyaLoans.csv with the data used for the analysis in Jack et al. (2023). The excel file “KenyaLoans Labels contains a description of the variables. In this question, we look at take-up rates.

7.1 Only keep individuals that took part in the Phase 1 of the intervention. Produce a bar graph that shows average loan take-up rates for each of the treatment groups. It should look like the graph  below  (notice that the  numbers  in  my graph  are  incorrect).  Make  sure you  include everyone who was assigned to the treatment, and not just the individuals who took up the loan.

7.2 Does allowing borrowers to use the water pump as collateral increase the take-up rate of the loans? Carefully justify your answer.

7.3 Would you expect higher loans take-up rate under individual or joint liability? Why?

7.4 Does the paper find a difference in loans take-up rate under individual vs. joint liability? Carefully justify your answer.

8.     Now, we look at treatment effects on the probability of default rates and late payments.

8.1 Create a table that shows average default rates and average probability of late payments for each of the treatment groups. For defaults, you will have to create a new variable equal to zero if the debt was fully repaid and equal to one otherwise. Make sure you drop individuals who did not take up the loan. The table  should  look like the one below (notice that the numbers in my table are incorrect).

8.2 Do the numbers in the table you produced for point 8.1 suggest that reducing the deposit requirements or not asking for a guarantor generates moral hazard? Carefully justify your answer.

8.3 Do the numbers in the table you produced for point 8.1 suggest that reducing the deposit requirements or not asking for a guarantor generates adverse selection? Carefully justify your answer.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图