代写Hydrosystems Engineering (EACEE 3250 / 4250) Spring 2025 Homework #4帮做Matlab编程

Hydrosystems Engineering (EACEE 3250 / 4250)

Spring 2025

Homework #4 (Due Friday, April 25th, 11:59 pm)

Homework Guidelines:

Your solutions to homework assignments will be submitted and graded through Gradescope (see the Gradescope tab on your Courseworks dashboard).

You will have two options for submitting your work in Gradescope, either: 1) upload individual scanned images of your handwritten pages (e.g., using your phone), one or more per question; or 2) upload a single PDF that you create which contains the whole submission (e.g., merge files on your computer or phone with a software of your choice).   Please use the naming convention Lastname_HWxx.pdf when submitting your homework assignment. You may

choose to type up your calculations, in which case show all your steps and highlight your solution. Note: During the upload, Gradescope will ask you to mark which page/s each problem is on (see example here). It is important that you follow that step for grading purposes.

It is acceptable to discuss problems with your colleagues, and questions are encouraged during office hours, but all work must be done independently. Make sure to clearly show all work on each problem and that your solutions are  presented in an orderly fashion. It is your responsibility to make your solutions easy to grade.

Topics/Chapters covered:

Chapter 9: Groundwater flow, well hydraulics, superposition

Solute and contaminant transport (notes)

Problem #1 Groundwater Flow (25 pts)

The aquifer shown in the below images has small amount of leakage R through the confining lower aquitard. In order to estimate this loss rate three observation wells are installed, as shown  below. The observation wells are 500 m apart and each record the following steady head values: Well #1 h1=50.00 m, Well #2 h2=46.25 m and Well #3 h3=45.00 m.

The aquifer material is homogeneous with transmissivity T =1000 m2day-1. Estimate the loss rate R and report it in mm day-1.


Problem #2 Groundwater Flow (25 points)

The earth dam shown below is 10 m high and 20 m wide. Its thickness is 3 m. The water level in the lake sits at 9 m above the base of the dam. In the stream below the dam the water level is steady at 0.5 m above the dam base. The flow in the stream is a product of water percolation through the earth dam and is measured to be constant at 270 m3 /day.


(a) Would you consider the earth dam to abide by the properties of an unconfined or confined aquifer? Why?

(b) Determine the head profile, h(x), in this earth dam.

(c) What is the hydraulic conductivity K (m/day) of the material in the earth dam?

Problem #3 Pumping Wells & Superposition (25 pts)

A well located 100 m west of a very large lake is pumped at a rate of Q = 150 m3  day-1  (see Figure 2 below).  The lake has a fixed piezometric head of 18 m. There are two observation wells nearby: well “A” is located 8 m north and 5 m east of the pumping well, and well “B” is located 50 m south and 4 m west of the pumping well. The aquifer that the well is pumping from is confined and is homogeneous and isotropic and has a storativity, S = 1.0 x 10-4  and a transmissivity, T = 50 m2  day-1.

Figure 2: Plan view of lake, pumping well, and observation wells for problem #2.

a) Estimate the piezometric head at the two observation wells 24 hours after pumping begins. You can safely assume that prior to pumping, the undisturbed piezometric surface over the domain was equal to the lake surface.  Clearly document how you solve the problem.

b) Are the drawdowns at the observation wells less than, greater than, or equal to the drawdown that would exist if the aquifer were of infinite extent (i.e. no lake boundary)?  Briefly explain why this is using physical arguments.

c) Additionally, show that with the solution obtained using image wells, the piezometric head at the lake remains constant at the lake boundary (as it should). Hint: in your explanation, you can do so by considering a hypothetical observation well at the boundary between the lake and the aquifer.

Problem #4 Solute/Contaminant Transport (25 pts)

The Plug and Chug Factory (P&G), located between two lakes suffers a leak in one of their toxic chemical pipes. This leak is eventually detected and sealed, but only after the chemicals had entered the homogenous confined aquifer. The Darcy flux in the aquifer is 1 m/day and the porosity of the aquifer material is 0.33. The concentration of the chemical that enters the aquifer is 100mg/L. Assume the chemical continues to leak into the aquifer undetected and that the chemicals mix through the depth of the aquifer instantaneously. Assume we have 1-D flow.

The general solution to the advection-diffusion transport equation in one dimension is defined as:

The analytical solution for this scenario using the complementary error function (erfc) is:

a) What are the two components of the overall D in the above equations? Would D likely increase or decrease if pore velocity decreased? Why?

(No calculations needed.)

b) Assuming D = 1x10-4 m2/s, plot the concentration profiles (in a software of your choosing, such as Excel or Matlab) for the following times and for each time indicate if the spill has been detected:

i. t=10 days

ii. t=30 days

iii. t=50 days

iv. t=100days

Combine your profiles on one plot, if possible,for ease of comparison.

c) The health department believes that concentrations of the chemical greater than  10mg/L is dangerous for consumption.

i. Calculate or estimate the time at which the concentration in Well B becomes greater than 10mg/L.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图