代写ECON30130, Spring Semester 2025代做C/C++编程

ECON30130, Spring Semester 2025

Data Science Project Guidelines

Rules & Guidelines

Ground Rules

This assignment counts 25% of your final grade.  You have to perform an econometric analysis using R, and write up your answers using Word, LATEX, R Markdown, or similar. The rules are as follows:

•  You have been given access to a restricted-use dataset, the Healthy Ireland Survey.  Please refer to the “Data Access and Security” document on Brightspace for details on locating it in Google Drive. Do not upload the dataset to any website, especially ChatGPT or similar.

•  The goal of the project is for you to conduct an econometric analysis using this dataset.  More details below.

•  You can do the project by yourself or in groups. The groups have been allocated as per Part 2 on Brightspace.

•  The deadline for the Project is 5pm on Friday, April 18th. A late penalty of ten percentage points per 24-hour period will be applied. Don’t delay starting.

•  Submissions should be in one PDF, and should include:  1) the write-up of the assignment, 2) the R code. Papers are to be submitted on Brightspace → Assessment → Assignments. Aim for about 6–10 pages total.

•  If students work in a group, only one group member should submit the paper on Brightspace. On the first page of the paper it should be clearly stated that this was a group project and the names and student numbers of the group members should be given.

•  UCD’s Academic Integrity Policy will apply. I will run plagiarism checks. Be very careful with LLMs, but they are allowed if used appropriately.

•  A solution will not be provided after the deadline.

Grading

Students will receive a letter grade for this assignment. Grading is based on the following criteria:

•  Correctness of the analysis and interpretations

•  Writing (clear and concise)

•  Exposition: are graphs and tables done well? They don’t need to look fancy, but it has to be clear what is shown. For regression tables, please use stargazer or alternative packages that give you professionally formatted regression tables.

•  All graphs and tables should be programmed with R, i.e. ideally not not copy & pasted anywhere

•  All graphs should be done with ggplot or similar (but not with the default grey background)

•  Tidyverse functions (especially the pipe operator) should be used to help clean the data.

Do not forget to cite the data in your bibliography:

Department of Health (2024). Healthy Ireland Survey, 2023 [dataset].  Version 1.  Irish Social Science Data Archive. SN: 0021-07. https://www.ucd.ie/issda/data/healthyireland/healthyireland2023/.

AI Policy

AI tools such as ChatGPT can be extremely useful for those who are able to use them.  I encourage students to use ChatGPT and equivalent programmes to assist them with the assignment.  ChatGPT can help you a lot with it; but an old rule holds here, too: garbage in, garbage out. I allow the use of AI software under conditions:

•  You, and only you are responsible for your assignment.  I will not have debates about the cor- rectness of an answer just because ChatGPT told you something is correct (it has no clue what is correct, trust me). And neither will I accept excuses for late submissions on the grounds that ChatGPT was down, or similar.

•  If you use AI, please declare this in the beginning of the assignment.  Explain briefly what you used it for by adding a section ”AI Statement” and, for example, state ”Our group used ChatGPT for language editing in parts XXX, and for correcting the R code in questions XXX.”

•  In addition to declaring its use atthe start, you must appropriately cite the use of AI in the bibliog- raphy. See the “Approaches to Teaching and Learning” section on the module course descriptor for more details.

Some tips

The aim of this assignment is to get students to figure things out. In the tutorials, clear instructions and coding examples were given along with a clean data set. However, this is far away from the work data analysts are doing.  Their projects typically have a clear goal, but the data are often messy and it is unclear how to reach the goal of the analysis. Simply put, the analyst has to figure things out: how to best clean the data set, how to best visualise data, how to bring the data into a format that is suitable for visualisation and regression analysis, etc.  If you’re working in a company, you neither refuse to do a project because ”we haven’t learned about a certain procedure in class”, nor can you run to your manager with every little error message you encounter. Ultimately, data analysts are paid for solving problems themselves or collaboratively with team members. The sooner you get into that mindset, the better. This assignment is similar to a project one would encounter in a data analytics job.

How to figure things out?

•  Google is your friend.  Get a strange error message?  Type it into Google; chances are someone else had the problem before.  You can also search StackOverflow, the forum for all things pro- gramming (R, Python, C++, etc).

•  If one solution doesn’t work, try another one. Solving problems is often frustrating; it takes time and a decent bit of grit.  So if you encounter a problem, solve it or find a way around.  There is always a solution!

Data Science Project

Part 1 of the project was to sketch an empirical model you found interesting. This encouraged you to think about the problem before looking at any data.  In the Google Drive, you will find the full Data Dictionary for the dataset.  The Data Dictionary lists all the variable names, the questions that were asked, and how the answers were recorded. You should set aside at least an hour to sit down and think about which variables you would like to include in your analysis. This analysis can look very different to what you initially found interesting in Part 1, that’s fine. Write out what you think the model should look like, and why you think the variables you chose are relevant.  Sketch an Introduction (perhaps 500 words) as to why this question is interesting.

With your model in mind, run your analysis. The first big step will be data cleaning. For this, you will need to “figure things out” as above.  It will likely take several hours before your data are in a format that is suitable for analysis. This is normal.

Perform. an econometric analysis on the question you found interesting. Pretend that this is a real- world problem and that you are a data analytics consultant hired by the government’s Department of Social Analysis.  You will be providing expert advice, and presenting your report directly to the Minister. He understands statistical reports but might need reminding on the details so make sure your report is clear and presentable, and that you demonstrate understanding of anything you include.

Be sure to include a table of summary statistics (number of observations, mean, sd, min, max). You may want to include two or three helpful visualisations of the data, such as a scatterplot or bar-chart. Run an OLS regression.  Choose the independent variables you think are relevant.  Discuss why you think they are relevant and/or why you include them (do you use theory, statistical tests, or a mix of both?)  Consider your choice of standard errors, and whether your want to test anything related to that.

Feel free to consider alternative specifications.  For example, you might include a table with 2–3 regression models presented, but with differing explanatory variables.  If you wish to include these, explain why you do so, and what the implications are. Note also that the outcome may be binary, and this fact might affect how you approach the econometrics.

Discuss causality. In general, explain your econometric decisions in a clear way. Be sure to include a table of well-formatted regression results.  Interpret the coefficients and statistical significance.  If included, interpret the relevant diagnostics (e.g. R2, F-test, etc).

In a concluding section, discuss the implications of your findings.  For example, does your anal- ysis support government priorities?  What would you recommend to the government?  What are the limitations of your analysis?


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图