代写Lab 10. A factorial MANOVA example.代写留学生Matlab语言程序

Lab 10.   A factorial MANOVA example.

This lab will use data from the 2019 Survey of Household Economics and Decision Making:

Since 2013, the Federal Reserve Board has conducted the Survey of Household Economics and Decisionmaking (SHED), which measures the economic well-being of U.S. households and identifies potential risks to their finances. The survey includes modules on a range of topics of current relevance to financial well-being including credit access and behaviors, savings, retirement, economic fragility, and education and student loans.

We will define, run, interpret and discuss a 2 x 3 factorial MANOVA on these data.

A.  Read the provided .CSV file into R.  This dataset is a SUBSET of the variables provided by the SHED 2019 survey, but it includes all observations.

B. Substantial cleaning of the data will be necessary, as follows.

The dependent variables you will analyze are built from provided variables B2, B3, B6, B7_a, and B7_b. For variable definitions and the range of variable values, see the provided extract from the codebook for the SHED 2019 publicly released data, file “SHED survey 2019 CODEBOOK EXTRACTS” . Create new versions of these variables, coded with numeric codes 1-4 or 1-5, as appropriate.  If the respondent ”Refused” the item, define it as missing data.

The two independent variables (factors) we will use are Sex and Edu (education).  Sex is a factor defined from survey variable ppgender.  It has values Male and Female (only).  Edu is a factor defined from survey variable ppeducat. It will have values HS (ppeducat=”Less than high school”,”High school”), SC (ppeducat=”Some College”), or BD (ppeducat=”Bachelor’s degree or higher”).

C. Check MANOVA assumptions, assuming that we will run a 2x3 MANOVA with predictors Sex and Edu, including the interaction. First, assess multivariate normality, both graphically and via an appropriate statistic, and report your conclusions. Eliminate any outliers if you find them.  Second, assess homogeneity of the variance-covariance matrices. Does this seem to be satisfied (justify/discuss your answer)?  Third, can you assess independence of residuals?

D. Regardless of your results from part C, run the MANOVA (omitting any observations with missing values) and discuss your findings. If there is any disparity in the results based on using different multivariate statistics, let the results for Pillai’s trace criterion guide your conclusions.  Use something resembling APA format in your one-paragraph report.  Add a second paragraph clarifying whether this is a balanced or unbalanced design, and mentioning what are the implications for estimation and interpretation.

E. Do you see any need to conduct tests of simple effects or simple main effects? Discuss.


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图