代做ECON0010: Introduction to Mathematics for Economics Problem Set 4, 2025代写Java编程

Department of Economics

Problem Set 4, 2025

ECON0010:

Introduction to Mathematics for Economics

Question 1: Matrix Algebra

Consider the following three matrices, sometimes called the Pauli Matrices,

and the vector-space of 2 ×2 matrices of the form.

. a] Show that the set of matrices like A is a real vector space, and that the Pauli matrices are elements of this set.

. b] Show that the three Pauli matrices form. a linearly independent triplet.

We define a new ‘Transpose’, the so-called Hermitian transpose Mt as

Mt = (MT)*    ,

and we use this to define a “double-dot” product on the vector space of matrices

A : B = Tr[A . Bt]  .

. c] Show that matrices of the form of A satisfy At = A, and for two matrices


calculate A : A, B : B and A : B.

. d] Find the characteristic equations for the eigenvalues of the Pauli matrices, determine their eigenvalues and their eigenvectors, and comment on your result.

Question 2: Constrained Optimization

Consider a community of agents j = 1,  ..., n, and suppose each agent has a private opinion sj on some issue I, but also a public opinion σj. We assume that the preferences of the community are given by a utility function

and because we are mainly interested in the relative scale & orientation of the two opinion-distributions we fix their shared scale by a constraint , the positive sign of this ensures that, on average, agents prefer their private and public opinions to align.

. a] Write down a Lagrangian for this constrained optimization problem.

. b] Find the first-order conditions and comment on the nature of the equations and their possible solutions if we assume A is symmetric.

Suppose it is a system with 3 agents and the matrix A is

. c] Find the solution with the highest utility, sketch how the opinions of each of the agents changes with θ and comment on your results.

Now suppose that the matrix A is not symmetric, but

. d] Find the solution with the highest utility, sketch how the opinions of each of the agents changes with θ and comment on your results.

Question 3: Difference Equations

Consider a firm with a production function f[x, y] = 10 (x y)1/3 and facing wage costs C = 2 x + 5 y. Assume that the firm is ‘learning’ where its optimal usage of resources x andy is in a process described by gradient-learning with respect to the profit they make.

. a] Find the profit-function π[x, y] and the system of difference equations that determine

(→)[t] = {x[t], y[t]} if the learning-rate is γ.

. b] Find the stationary state

Suppose the firm has reached the stationary state some time ago, and suddenly there is a small

shock in the price of one of the inputs pxpx + δpx . As a result the firm’s response will lead to a small change in their use of resources, i.e.

. c] Find a linear approximation to the equations for the firm’s response , find the stationary state for , and check for stability.

. d] Now an economist argues that a better model would be to assume that changing resource usage comes at an additional administrative and logistical cost equal to They argue that the firm would not be gradient-learning, but would follow an optimal path to the equilibrium. Find the Euler equations for this scenario, also their linearized form, and comment on the difference this makes compared to the gradient- learning case.

Question 4: Optimization

Consider the following function f[] of n variables = {x1,  ..., xn} and with a symmetric n × n, symmetric, matrix M with strictly positive eigenvalues,

We are interested in whether this function has any local optima.

. a] Find the first-order conditions for the local optima.

. b] Suppose we rewrite = x , where x is the length of and a unit vector in the same

direction. Show that whenever is parallel to an eigenvector of M there is a solution for x as long as the corresponding eigenvalue is positive.

. c] Suppose

Find the eigenvalues of M, the normalised eigenvectors, the corresponding solutions to the FoCs and determine any constraints on the value of a for all solutions to be real-valued.

. d] Suppose a = 1/2, find the (local) maxima , calculate f[] and determine at a = 1/2.

Question 5: Differential equations

Consider an agent with an opinion σ[t] and preferences described by

. a] If we assume that this agent learns what the optimal opinion is by a process described by gradient-learning, with a learning-rate γ, find the differential equation satisfied by σ[t] and  establish wether there is a stationary state σs?

. b] Solve this equation assuming that initially the agent is ‘neutral’, i.e. σ[0] = 0.

A researcher now proposes a different model. They suggest that the evolution of the agent’s opinion is described by the equation

η - R σ[t] + μ σ,, [t] = 0  with μ > 0  .

. c] Find a solution for this equation for which σ[0] = 0 and , and comment on the

difference between this solution and the one from the model used in a] and b].

. d] Show that the new model-equation can be found as the result of the agent choosing an optimal path, assuming preferences given by

under suitable initial- and final-conditions and comment on why this model is actually more general by finding an equation describing the case where the agent is discounting future utility at time t by e- r t, and discuss the effect of future-discounting on the solution.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图