代做MECH9325 Fundamentals of Acoustics and Noise代写Matlab语言

School of Mechanical and Manufacturing Engineering

MECH9325 Fundamentals of Acoustics and Noise

Assignment – Acoustic performance of a multilayered coating

Due date: Monday 31 March 5pm (Moodle online submission)

Aim

The aim of this assignment is to theoretically and numerically investigate the acoustic performance of multilayered coating.

Background

A silicone material called polydimethylsiloxane (PDMS) is often used as a noise control material in underwater applications due to its acoustic impedance being relatively close to that of water, thus allowing sound waves to transition into the material with minimal reflection. In this assignment, both the transfer matrix method and the finite element method will be used the characterise the acoustic performance of a multilayered coating using PDMS as the host material. Part 1 of this assignment will consider a multilayered homogeneous material comprising multiple layers of the same PDMS material.

Transfer Matrix Method

The transfer matrix method is a common method to model acoustic elements. Consider an acoustic element of length L. An incident harmonic plane wave propagating in the x-direction impinges on the left hand side of the element. An expression for the harmonic plane wave of unity amplitude is given by pinc = ei(wt-kx) where w is the angular frequency, k is the longitudinal wavenumber (also known as the acoustic wavenumber), t is the time variable, x is the spatial variable, and i = √一1.

The acoustic pressure and particle velocity on the incidence side of the element are denoted by pinc and uinc . Similarly, the acoustic pressure and particle velocity on the transmission side of the element are denoted by ptr and utr. Using the transfer matrix method, the acoustic pressure and particle velocity on the transmission side can be found in terms of the acoustic pressure and particle velocity on the incidence side as follows

(1)

where M is the transfer matrix given by

(2)

In Eq. (2), z = Pc is the characteristic impedance of the material where P is the density of the material and c is the speed of sound in the material, and k = w/c is the acoustic wavenumber. For multiple acoustic elements, the transfer matrix of the total design is obtained by multiplying together the transfer matrix of each element in sequential order of the elements as follows

M = M1 . M2 … Mn                                                                               (3)

Consider the homogeneous material of length L divided in N identical layers each of length Ln, that is, Ln = L/N. The transfer matrix method of each layer becomes

(4)

The total transfer matrix is obtained by multiplying together the transfer matrix  of each layer in sequential order of the layers, which yields

(5)

Using the elements of the transfer matrix, the transmission and reflection coefficients are obtained as follows

(6)

(7)

where zinc and ztr are the characteristic impedances ofthe fluid on incidence and transmission sides of the material. In this case, zinc  = ztr  = Pwcw where Pw , cw are the density and speed of sound in water. From the transmission coefficient, the transmission loss (in dB) is obtained as

TL = -10log10  |T|                                                      (8)

Single layer and Multilayered Designs

In Part 1 you are required to model a single layer PDMS material and a multilayered PDMS material as shown in Figs. 1(a) and 1(b), with water on the incidence and transmission sides of the material. Consider an  incident  harmonic  plane  wave.  Obtain  the  reflection  coefficient,  transmission  coefficient  and transmission loss of the single and multilayered homogeneous materials theoretically (using the transfer matrix method programmed in Matlab) and numerically (using COMSOL). A Matlab script. is appended to this document.

(a)

(b)

Figure  1 (a) Homogeneous material and (b) multilayered homogeneous material with water on the incidence and transmission sides.

Numerical Model

Using the finite element software COMSOL, develop a 3D numerical model to calculate the reflection and transmission coefficients, and the transmission loss. You can model either a square duct or a circular duct (dimensions are given below for a square duct). Use the following parameters.

Dimensions of the square duct cross-section: 0.05m by 0.05m

Length of single layer PDMS material: 0.2m

Length of duct before/after material: 0.5m

Length of Perfectly Matched Layer before/after duct: 0.4m

Maximum number of layers: 10

Density of water: 1000 kg/m3

Speed of sound in water: 1500 m/s

Density of PDMS: 1000 kg/m3

Speed of sound in PDMS: 1000 m/s

Frequency range: 1 Hz up to 5000 Hz in steps of 25 Hz

COMSOL Installation

Download and install the COMSOL software. To do this, the first step is to register for a COMSOL Access Account at

www.comsol.com/access/

Once you have registered, you can then download COMSOL 6.3 from the following link

www.comsol.com/product-download/

Use the ISO for offline installation (down the bottom of the product download page). If you attempt to download via the online installer, you may run into connectivity issues.

In the final step, use the following passcode

17211400000004001-PAUS-250706-5083305-70EA692E560A

You will also be able to access a wide range of helpful and innovative resources.

Useful Resources

Please use the following resources useful to generate your numerical models:

1.    Geometry tutorial:https://www.youtube.com/watch?v=I6te1NFnS44

2.    Meshing tutorial:https://www.youtube.com/watch?v=UK8O-LV1uoU

3.    Frequency   analysis: Tutorial Models for Various Analyses of    a   Bracket Download bracket_basic.mph and models.sme.bracket_frequency.pdf, following the instructions in the PDF to build the full model. The final model is also provided on this webpage as bracket_frequency.mph.

Results

Theoretically and numerically calculate the absolute value for the reflection and transmission coefficients, and the transmission loss, for the single layer PDMS and the multilayered PDMS. Present your results as 2D plots as a function of frequency. You can superimpose your results for the single and multiple layers, as well as superimpose your results obtained theoretically and numerically. Discuss the values of the coefficients.

Poster

Provide your results in a poster. A couple of poster templates have been provided. You can also design your own poster layout. Your poster should include an introduction, description of the numerical model, results and discussion. A poster should not be too detailed or busy. For example, the lecture slides for this course are visually much easier to read than the lecture notes. The presentation of a poster should aim to be similar to the lecture slides by using large font size, bullet points where possible, no large chunks of text and large clear figures with easy to read axis labels. Your poster can also include references in smaller font size.

Matlab Script

Matlab script. of a single layer

clc

clear

close all

%% Material properties rho_water = 1000;

%density of water

rho_PDMS = 1000;

%density of PDMS

c_water = 1500;

%speed of sound in water

c_PDMS = 1000;

%speed of sound in PDMS

z_water = rho_water*c_water;     %characteristic impedance of water

z_PDMS = rho_PDMS*c_PDMS;   %characteristic impedance of PDMS

L = 0.2;                                          %total thickness of PDMS block

j=1;

for f=10:10:5000                          %frequency sweep

k = 2*pi*f/c_PDMS;                      %acoustic wavenumber of PDMS

%Transfer matrix

M = [cos(k*L), 1i.*z_PDMS.*sin(k*L); 1i.*sin(k*L)./z_PDMS, cos(k*L)];     %1i is the imaginary unit

%Elements of the transfer matrix

M11 = M(1,1);

M12 = M(1,2);

M21 = M(2,1);

M22 = M(2,2);

%Transmission coefficient

T(1,j) = 2./(M11 + M12/z_water + z_water*M21 + M22);

T(1,j) = sqrt(real(T(1,j)).^2 + imag(T(1,j)).^2);

%Reflection coefficient

R(1,j) = (M11 + M12/z_water - z_water*M21 - M22)/(M11 + M12/z_water + z_water*M21 + M22); R(1,j) = sqrt(real(R(1,j)).^2 + imag(R(1,j)).^2);

%Transmission loss

TL(1,j)= -10*log10(T(1,j));

freq(1,j)=f;

j=j+1;

end

% Figures

figure(1)

plot(freq,TL,'k-')

xlabel('Frequency (Hz)')

ylabel('Transmission loss (dB)')

figure(2)

plot(freq,T,'k-')

xlabel('Frequency (Hz)')

ylabel('Transmission coefficient')

figure(3)

plot(freq,R,'k-')

xlabel('Frequency (Hz)')

ylabel('Reflection coefficient')

Modification to Matlab script. for multiple layers

L = 0.2;

%total thickness of PDMS block

N=4;

%number of layers

Ln = L/N;

%thickness of each layer

%Transfer matrix of one layer

Mn = [cos(k*Ln), 1i.*z_PDMS.*sin(k*Ln); 1i.*sin(k*Ln)./z_PDMS, cos(k*Ln)];

%Total transfer matrix for N number of layers M=Mn*Mn*Mn*Mn;


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图