代做ECON0006: INTRODUCTION TO MATHEMATICS FOR ECONOMICS SUMMER TERM 2024代做留学生SQL语言程序

SUMMER TERM 2024

DEPARTMENTALLY MANAGED REMOTE ONLINE EXAMINATION

ECON0006: INTRODUCTION TO MATHEMATICS FOR ECONOMICS

Assessment Component: 80% Remote Online Controlled Condition Examination

Time Allowance: You have 2 hours to complete this examination, plus an additional collation time of 20 minutes and an Upload Window of 20 minutes.  The additional collation time has been provided to cover any additional tasks that may be required when collating documents for upload, and the Upload Window is for uploading and correcting any minor mistakes.   The additional collation time and Upload Window time allowance should not be used for additional writing time.

If you have been granted SoRA extra time and/or rest breaks, your individual examination duration and additional collation time will be extended pro-rata and you will also have the 20- minute Upload Window added to your individual duration.

If you miss the submission deadline during the 40-minute Late Submission Period and do not receive approved mitigation for the circumstances relating to your late submission, a Late Submission Penalty will be applied by the Module Administrator.   At the end of the Late Submission Period, you will not be able to submit your work via Moodle and you will not be permitted to submit work via email or any other channel.

All work must be submitted anonymously in a single PDF file.  Do not write your name and student number in either the file or the file name.   The file name must be in the following format: Module Code-%Exam i.e. ECON0006-80%Exam.

Page Limit: 24 pages.

Academic Misconduct: By submitting this assessment, you are confirming that you have not violated UCL’s Assessment Regulations relating to Academic Misconduct contained in Section 9 of Chapter 6 of the Academic Manual.

Number of Questions Answered Policy: In cases where a student answers more questions than requested by the examination rubric, the policy of the Economics Department is that the student’s first set of answers up to the required number will be the ones that count (not the best answers).  All remaining answers will be ignored.

QUESTIONS

Answer ALL FIVE questions from Part A and TWO questions from Part B.

Questions in Part A carry 10 per cent of the total mark each and questions in Part B carry 25 per cent of the total mark each.

PART A

1.          Find the values ofa for which the matrix

is not invertible.

For all other values ofa find an expression for the inverse.

2.          Find the range of values ofk for which the quadratic forms

are positive definite.

3.          Suppose

Z = y3 exy.

Use the small increments formula to find, in terms of e, an approximation to the change in z when x changes from 1 to 1 + Δx andy changes from 1 to 1 + Δy, where Δx and Δy are small.

Now suppose you are additionally given

x = 2t,    y = t 2  + t.

Use the chain rule to find, in terms of e, dZ/dt when t = 1.

4.          Find the x andy coordinates of the critical points of the function

f (x, y) = 3x2  − y3 +12xy − 36y

and classify each critical point as a local maximum, local minimum, saddle point or none of these.

5.          Find the general solution of the difference equation

3y t+1 + 2y t  = 3.

What happens to the general solution as t → ∞? Find also the solution which satisfies y = 1 when t = 0 and sketch its graph.

PART B

6.          Find the determinant of the matrix

Solve the equation system

x + 2y + λz = 0

2x + 3y — 2z = λ

λx + y + z = 3

for all values of λ .

7.          (a) Suppose the production function in an economy takes the form.

F(K, L) = KαLβ (α, β > 0)

where K andL denote capital and labour respectively.

Find a condition in terms of α and β for the production function to exhibit decreasing returns to scale. Show that if this production function exhibits decreasing returns to scale, then it also exhibits diminishing returns to each input. State, with reasons, whether the converse is true.

(b) Suppose F(K,L)  is  a  general production function  satisfying F(0,0) = 0 .  Show that if F(K,L) is concave then it cannot display increasing returns to scale.

(c) Now suppose the production function in an economy takes the form. Q = H(K, L)ert

where Q, K, L and t denote aggregate output, capital, labour and time respectively. Suppose further that r is a positive constant, H(K, L) is homogeneous of degree s where s is a positive constant and K and L have the same constant proportionate rate of growth m. Find the rate of growth of output.

8.          Consider the production function

where Q, K and L denote output, capital and labour respectively and where a and b are positive constants.

Sketch the isoquant diagram.

Suppose that the prices of capital and labour are r and w respectively. Find the cost function.

Find also the elasticity of substitution.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图