代写CIENE 4256 Machine Learning FINAL PROJECT

FINAL PROJECT

Final project topics: You must identify a topic that interests you and agreed by the instructor. See the list of possible topics for inspirations. For topics, the only requirement is that the topic must be civil engineering, environmental engineering, or engineering mechanics related. You are welcome to explore applications of machine learning in the wider realm of these fields (e.g., structural, geotechnical, environmental, traffic, urban). The evaluation of the final project will not be affected by the topic selected.

List of possible topics (note that for all these topics, I can give you some general ideas of what specific tasks are out there and can be solved by machine learning techniques, but you are still responsible to find the data sourcefor specific tasks on your own):

•   Construction worker safety

•   Structural health monitoring

•   High performance building monitoring and control

•   Building cluster energy consumption and demand response

•   Construction  robotics   (e.g.,   navigation,   object   detection,   assembly,   human-robot collaboration)

Final project team formation: you are expected to form. teams of two for the final project. Single person team is also allowed.

Final project consultation: you are welcome to book a 30-min time slot with me (feel free to email me) and discuss any project ideas.

Final project check-in: To facilitate the completion of the final project, we will have a final project check-in towards the beginning of the second half of the semester. For the check-in, you are expected to submit a maximum 2-page report outlining: (1) the main objective of the final project (2 points), and (2) existing/possible data sources (note that if there is no existing data source, a mechanism for collecting data needed for the project is required) (3 points).

The final deliverable of the final project will be: (1) a report of the findings of the final project, and (2) a 10-minute presentation of the final result/product of the final project. You are also encouraged, but not required, to publish your work on open online repositories (e.g., GitHub).

Final Report Guidelines:

The final report should be maximum 10 pages in length, single space, 12 pt. Times New Roman, default margin. Include the following sections:

Introduction (1-2 pages, 2 points): First introduce the significance of the problem. For example, if you are predicting energy consumption of buildings, you can mention facts such as buildings account for 45% of the energy consumed in the U.S. every year. Next, formulate the problem. How do you formulate your problem into a machine learning problem? What is the input, output? Where did you get the data?

Background (1-2 pages, 2 points): what is the state-of-the-art model for the problem you are trying to solve? For example, if you are solving a hardhat detection problem, what is the best performing model for the problem hardhat detection? Why did you choose the model you are using?  Cite the papers/sources you are referencing and give a succinct summary of their performance metrics and results.

Methodology (2-3 pages, 8 points): lay out the model you used, the hyperparameter of the model, and the overall structure of model (e.g., if you are using CNN, what is the CNN structure, how many parameters, what are the layers, etc.). A figure depicting the overall work flow of the methodology is helpful. What did you do in each of the steps for this project (e.g., data collection, data cleaning, model architecture used, validation methods used, etc.)

Metrics (1 page, 2 points): give definitions/equations of the metric you used.

Results (3-4 pages, 4 points): show the results for your models, using the metrics you defined in the last section.

Limitations (1 page, 2 points): what are the limitations for this project? How would you improve the project if you have (e.g., high performance computers, larger datasets, better ML models, more time, etc.)?

Reference (does not count towards the total number of pages): give a list of references.

10-Minute Final Presentation Guidelines:

This should be a presentation that captures the main idea and results of the project. It should show the most important and coolest parts of the project, with narration to explain how it works. Think of it as a 10-minute thesis presentation. The following criteria will be used for grading:

•   Did every member on the team present (0.5 point)?

•   Did the presenter properly motivate the audience regarding the problem being solved (1 point)?

•   How is this problem currently being addressed in the industry, in academia (1.5 points)?

•   Was the problem formulation clearly stated (1 point)?

•   Was the methodology clearly explained (2.5 points)? (What model, why this model? What architecture, why this architecture? What other models did you use as comparisons?)

•   Were the results clearly explained with proper figures, tables (2 points)?

•   Did the presenters provide a concise take home message for this project (0.5 point)?

•   Did the presenter properly acknowledge the limitations of this project and identified future directions (1 point)?


热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图