代做ACTL90001 Mathematics of Finance I Assignment 1代写C/C++程序

Department of Economics, Centre for Actuarial Studies

ACTL90001 Mathematics of Finance I Assignment 1

Due 5:00pm Friday 25 April 2025 Melbourne Time

Cover Sheet

Instructions for submission

1.      This assignment contributes  10% of the total university assessment in this subject. Please follow these instructions carefully. Penalties will be imposed for failure to comply with them.

2.      Round your solutions to the nearest cent. All steps of calculation must be clearly shown. Explanatory notes on how you conduct the calculation in your excel file is necessary. Your solutions do not have to be typed; nevertheless, handwriting that is very difficult to read may not be marked. Please refrain from using a red pen anywhere in the assignment.

3.      Please indicate your student ID number clearly in your file names, e.g., idnumber.pdf and idnumber.xlsx

4.      Attach this cover sheet on top of your solutions, and then submit your typed or scanned solutions in PDF format together with your programming file and/or Excel spreadsheet to Canvas by 5:00pm on Friday 25 April 2025.

5.      I assume you already knew how to make a submission on Canvas. Please note that the due time for this assignment is sharp. Penalties will apply to any late submissions. If you are unable to  submit  on  time, please  contact  FBE  to make  an  official  application  for  late submission. I will not grant submission extension by myself.

6.      Some parts in this assignment are designed to be dependent on your student number, and hence has no general standard solutions. Please also keep your work confidential, any two identical or highly identical works will be penalized.

7.      If you have any questions about this assignment, please post them to LMS under the tag of “Discussions”. Kindly note that I do not respond to assignment-related questions via email.

8.      This assignment is to be completed individually. By signing below, you declare that your work does not involve plagiarism or collusion with other students.

I declare that this assignment is my own work and does not involve plagiarism or collusion with other students.

Student Number

Name in Full

Signature

Plagiarism is the presentation by a student of an assignment which has in fact been copied in whole or in part from another student’s work, or from any other source (e.g. published books or periodicals), without due acknowledgement in the text. Collusion is the presentation by a student of an assignment as his or her own which is in fact the result in whole or part of unauthorised collaboration with another person or persons.

Assignment 1 2025

1. [2 marks] Suppose you're modeling the yearly claim amounts for a long-term care (LTC) insurance product. To keep things simple, you assume that each policyholder's annual claims are i.i.d. random variables.

That means you're assuming:

●     Each year’s claim is independent of previous years

●     Each year’s claim follows the same distribution

Explain two points why i.i.d. might be a bad assumption here.

2. [3 marks] Data collection and processing. Human Mortality Database (HMD) is an international database which currently holds detailed data for 41 countries or regions. The website is,

https://www.mortality.org/

The data in HMD are provided free of charge to all individuals who request access to the database. However, before gaining full access to the database, you must become a registered user, which requires accepting our user agreement and answering just a few questions. Please register as a user of the website.

On the homepage of HMD, choose a country or region of interest. Download the "1×1" data for "Males" from the "Life tables" section. Extract the data for m_x, including age and year. Store the data as time series data for each age in an Excel spreadsheet. The format should follow the example below, adjusting years and ages as necessary based on data availability:

Note: This question is a basic training to obtain data from some reliable websites. You are  encouraged to  use  google, youtube,  ChatGPT,  by  any  means,  when  you  have trouble in each step of your operations.

Hint: When you reformat the original data, the function “PivotTable” under the tag of “Insert” may be useful.

3. As you can observe from the website of the Reserve Bank of Australia (RBA), the interest rate changes along with time. The attached excel file “A1Q3data.xlsx” gives the deposit interest rates from January 1982 to March 2025. Column B (in percentage, e.g.  11.65  means  11.65%)  gives  the  nominal  rate  of  interest  per  annum  payable monthly corresponding to the month in Column A. Assume one month is 1/12 of one year (no need to count days). Let the initial capital C be the last four digits of your student number, e.g. if your student number is 1213856 then C=3856 (ignore 0 if it starts  with  0,  e.g.  for  0123  then  use C=123).  Using  Excel,  answer  the  following questions.

(a) [2 mark] Suppose you deposit C at the start of year 1982, compute the accumulated amount in your account at the end of March 2025.

(b) [2 marks] Suppose you deposit C at the start of each quarter from January 1982 to March 2025, compute the total accumulated amount in your account at the end of March 2025.

(c) [2 marks] Suppose you deposit C at the start of February in each year from 1982 to 2025, compute the total accumulated amount in your account at the end of March 2025.

(d)  [2 marks] Suppose  you  deposit C at  the  start  of  year  1982  and  keep increasing by $300 at the start of each subsequent years, i.e. C+300 in year 1983, C+600  in  year   1984,  …, C+12900  in  year  2025.  Compute  the  total accumulated amount in your account at the end of March 2025.

(e)  [2 marks] Consider  a  one-year  deposit  strategy  where  you  deposit  an amount C at the start of a year and withdraw it at the end of the same year. Determine, between the years 1982 and 2025, which year yields the highest accumulation and which year yields the lowest accumulation.

(f) [4 marks] Compute the arithmetic average of the interest rates in column B (from B8 to B526). Utilize this average as the constant nominal interest rate per  annum  payable  monthly  throughout  the  period  from  January  1982  to March 2025 to find the accumulated amount corresponding to the payment patterns in parts (a), (b), (c), and (d).

(g) [4 marks] Using the constant interest rate obtained in part (f), denoted by i (12) . Develop a method using i(12)  (or  its equivalents), along with actuarial notations such as an(-)-, Sn(-)-, a…n(-)-, S…n(-)-, (Ia)n(-)-, (IS)n(-)-, etc., to solve part (a), (b), (c) and (d), and compare your results with Excel results in part (f).

(h) [2 marks] A financial analyst intends to utilize the average rate determined in  part  (f)  as the  anticipated  interest  rate  for  the subsequent three years, spanning from 2026 to 2028. Generate a chart depicting the fluctuation of interest rates over time from January 1982 to March 2025. Utilize this chart to provide insights on the suitability of this plan.




热门主题

课程名

mktg2509 csci 2600 38170 lng302 csse3010 phas3226 77938 arch1162 engn4536/engn6536 acx5903 comp151101 phl245 cse12 comp9312 stat3016/6016 phas0038 comp2140 6qqmb312 xjco3011 rest0005 ematm0051 5qqmn219 lubs5062m eee8155 cege0100 eap033 artd1109 mat246 etc3430 ecmm462 mis102 inft6800 ddes9903 comp6521 comp9517 comp3331/9331 comp4337 comp6008 comp9414 bu.231.790.81 man00150m csb352h math1041 eengm4100 isys1002 08 6057cem mktg3504 mthm036 mtrx1701 mth3241 eeee3086 cmp-7038b cmp-7000a ints4010 econ2151 infs5710 fins5516 fin3309 fins5510 gsoe9340 math2007 math2036 soee5010 mark3088 infs3605 elec9714 comp2271 ma214 comp2211 infs3604 600426 sit254 acct3091 bbt405 msin0116 com107/com113 mark5826 sit120 comp9021 eco2101 eeen40700 cs253 ece3114 ecmm447 chns3000 math377 itd102 comp9444 comp(2041|9044) econ0060 econ7230 mgt001371 ecs-323 cs6250 mgdi60012 mdia2012 comm221001 comm5000 ma1008 engl642 econ241 com333 math367 mis201 nbs-7041x meek16104 econ2003 comm1190 mbas902 comp-1027 dpst1091 comp7315 eppd1033 m06 ee3025 msci231 bb113/bbs1063 fc709 comp3425 comp9417 econ42915 cb9101 math1102e chme0017 fc307 mkt60104 5522usst litr1-uc6201.200 ee1102 cosc2803 math39512 omp9727 int2067/int5051 bsb151 mgt253 fc021 babs2202 mis2002s phya21 18-213 cege0012 mdia1002 math38032 mech5125 07 cisc102 mgx3110 cs240 11175 fin3020s eco3420 ictten622 comp9727 cpt111 de114102d mgm320h5s bafi1019 math21112 efim20036 mn-3503 fins5568 110.807 bcpm000028 info6030 bma0092 bcpm0054 math20212 ce335 cs365 cenv6141 ftec5580 math2010 ec3450 comm1170 ecmt1010 csci-ua.0480-003 econ12-200 ib3960 ectb60h3f cs247—assignment tk3163 ics3u ib3j80 comp20008 comp9334 eppd1063 acct2343 cct109 isys1055/3412 math350-real math2014 eec180 stat141b econ2101 msinm014/msing014/msing014b fit2004 comp643 bu1002 cm2030
联系我们
EMail: 99515681@qq.com
QQ: 99515681
留学生作业帮-留学生的知心伴侣!
工作时间:08:00-21:00
python代写
微信客服:codinghelp
站长地图